Skip to main content
Log in

Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn’s disease

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

We analyzed the fecal microbiota profiles of patients with Crohn’s disease (CD) at 4 inflammatory bowel disease (IBD) centers located in different districts in Japan.

Methods

Terminal restriction fragment length polymorphism (T-RFLP) analysis was performed in 161 fecal samples from CD patients and 121 samples from healthy individuals. The bacterial diversity was evaluated by the Shannon diversity index (SDI).

Results

There were no regional differences in the fecal microbiota profiles of the healthy individuals in Japan. A setting of similarity generated three major clusters of T-RFs: one included almost all the healthy individuals (118/121), and the other two clusters were mainly formed by CD patients at different stages of disease activity. The changes in simulated bacterial composition indicated that the class Clostridia, including the genus Faecalibacterium, was significantly decreased in CD patients with active disease and those in remission as compared with findings in the healthy individuals. In contrast, the genus Bacteroides was significantly increased in CD patients during the active phase as compared with findings in the healthy individuals. The genus Bifidobacterium was significantly decreased during the active phase of CD and increased to healthy levels during the remission phase. The bacterial diversity measured by the SDI was significantly reduced in CD patients during the active and remission phases as compared with findings in the healthy individuals. From the clinical data and T-RFLP analysis, we developed a logistic model to predict disease activity based on the fecal microbiota composition.

Conclusion

Dysbiosis in CD patients was shown by a multi-IBD center study. The feasibility of using the fecal microbiota profile as a predictive marker for disease activity is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sands BE. Inflammatory bowel disease: past, present, and future. J Gastroenterol. 2007;42:16–25.

    Article  PubMed  Google Scholar 

  2. Mayer L. Evolving paradigms in the pathogenesis of IBD. J Gastroenterol. 2010;45:9–16.

    Article  PubMed  CAS  Google Scholar 

  3. Hibi T, Ogata H. Novel pathophysiological concepts of inflammatory bowel disease. J Gastroenterol. 2006;41:10–6.

    Article  PubMed  Google Scholar 

  4. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–29.

    Article  PubMed  CAS  Google Scholar 

  5. Hamilton MJ, Snapper SB, Blumberg RS. Update on biologic pathways in inflammatory bowel disease and their therapeutic relevance. J Gastroenterol. 2012;47:1–8.

    Article  PubMed  CAS  Google Scholar 

  6. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134:577–94.

    Article  PubMed  CAS  Google Scholar 

  7. Mizoguchi A, Mizoguchi E. Inflammatory bowel disease, past, present and future: lessons from animal models. J Gastroenterol. 2008;43:1–17.

    Article  PubMed  Google Scholar 

  8. Sartor RB. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006;3:390–407.

    Article  PubMed  CAS  Google Scholar 

  9. Wirtz S, Neurath MF. Mouse models of inflammatory bowel disease. Adv Drug Deliv Rev. 2007;59:1073–83.

    Article  PubMed  CAS  Google Scholar 

  10. Braun J, Wei B. Body traffic: ecology, genetics, and immunity in inflammatory bowel disease. Annu Rev Pathol. 2007;2:401–29.

    Article  PubMed  CAS  Google Scholar 

  11. Seksik P, Sokol H, Lepage P, Vasquez N, Manichanh C, Mangin I, et al. Review article: the role of bacteria in onset and perpetuation of inflammatory bowel disease. Aliment Pharmacol Ther. 2006;24(Suppl 3):11–8.

    Article  PubMed  CAS  Google Scholar 

  12. Elson CO, Cong Y, McCracken VJ, Dimmitt RA, Lorenz RG, Weaver CT. Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol Rev. 2005;206:260–76.

    Article  PubMed  Google Scholar 

  13. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.

    Article  PubMed  CAS  Google Scholar 

  14. Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008;456:259–63.

    Article  PubMed  CAS  Google Scholar 

  15. Kabi A, Nickerson KP, Homer CR, McDonald C. Digesting the genetics of inflammatory bowel disease: Insights from studies of autophagy risk genes. Inflamm Bowel Dis. 2012;18:782–92.

    Article  PubMed  Google Scholar 

  16. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104:13780–5.

    Article  PubMed  CAS  Google Scholar 

  17. Matsuda H, Fujiyama Y, Andoh A, Ushijima T, Kajinami T, Bamba T. Characterization of antibody responses against rectal mucosa-associated bacterial flora in patients with ulcerative colitis. J Gastroenterol Hepatol. 2000;15:61–8.

    Article  PubMed  CAS  Google Scholar 

  18. Lucke K, Miehlke S, Jacobs E, Schuppler M. Prevalence of Bacteroides and Prevotella spp. in ulcerative colitis. J Med Microbiol. 2006;55:617–24.

    Article  PubMed  CAS  Google Scholar 

  19. Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, et al. Mucosal flora in inflammatory bowel disease. Gastroenterology. 2002;122:44–54.

    Article  PubMed  Google Scholar 

  20. Hayashi H, Sakamoto M, Benno Y. Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol. 2002;46:535–48.

    PubMed  CAS  Google Scholar 

  21. Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MH, et al. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol. 1995;61:3069–75.

    PubMed  CAS  Google Scholar 

  22. Andoh A, Benno Y, Kanauchi O, Fujiyama Y. Recent advances in molecular approaches to gut microbiota in inflammatory bowel disease. Curr Pharm Des. 2009;15:2066–73.

    Article  PubMed  CAS  Google Scholar 

  23. Nagalingam NA, Lynch SV. Role of the microbiota in inflammatory bowel diseases. Inflamm Bowel Dis. 2012;18:968–84.

    Article  PubMed  Google Scholar 

  24. Andoh A, Imaeda H, Aomatsu T, Inatomi O, Bamba S, Sasaki M, et al. Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn’s disease using terminal restriction fragment length polymorphism analysis. J Gastroenterol. 2011;46:479–86.

    Article  PubMed  Google Scholar 

  25. Andoh A, Tsujikawa T, Sasaki M, Mitsuyama K, Suzuki Y, Matsui T, et al. Fecal microbiota profile of Crohn’s disease determined by terminal restriction fragment length polymorphism (t-rflp) analysis. Aliment Pharmacol Ther. 2009;29:75–82.

    Article  PubMed  CAS  Google Scholar 

  26. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691–6.

    Article  PubMed  Google Scholar 

  27. Best WR, Becktel JM, Singleton JW, Kern F Jr. Development of a Crohn’s disease activity index National Cooperative Crohn’s Disease Study. Gastroenterology. 1976;70:439–44.

    PubMed  CAS  Google Scholar 

  28. Matsumoto M, Sakamoto M, Hayashi H, Benno Y. Novel phylogenetic assignment database for terminal-restriction fragment length polymorphism analysis of human colonic microbiota. J Microbiol Methods. 2005;61:305–19.

    Article  PubMed  CAS  Google Scholar 

  29. Sakamoto M, Takeuchi Y, Umeda M, Ishikawa I, Benno Y. Application of terminal RFLP analysis to characterize oral bacterial flora in saliva of healthy subjects and patients with periodontitis. J Med Microbiol. 2003;52:79–89.

    Article  PubMed  CAS  Google Scholar 

  30. Marsh TL, Saxman P, Cole J, Tiedje J. Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Appl Environ Microbiol. 2000;66:3616–20.

    Article  PubMed  CAS  Google Scholar 

  31. Hill TC, Walsh KA, Harris JA, Moffett BF. Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol. 2003;43:1–11.

    Article  PubMed  CAS  Google Scholar 

  32. Chiang JK, Cheng YH, Koo M, Kao YH, Chen CY. A computer-assisted model for predicting probability of dying within 7 days of hospice admission in patients with terminal cancer. Jpn J Clin Oncol. 2010;40:449–55.

    Article  PubMed  Google Scholar 

  33. Andoh A, Sakata S, Koizumi Y, Mitsuyama K, Fujiyama Y, Benno Y. Terminal restriction fragment length polymorphism analysis of the diversity of fecal microbiota in patients with ulcerative colitis. Inflamm Bowel Dis. 2007;13:955–62.

    Article  PubMed  Google Scholar 

  34. Nishikawa J, Kudo T, Sakata S, Benno Y, Sugiyama T. Diversity of mucosa-associated microbiota in active and inactive ulcerative colitis. Scand J Gastroenterol. 2009;44:180–6.

    Article  PubMed  CAS  Google Scholar 

  35. Nomura T, Ohkusa T, Okayasu I, Yoshida T, Sakamoto M, Hayashi H, et al. Mucosa-associated bacteria in ulcerative colitis before and after antibiotic combination therapy. Aliment Pharmacol Ther. 2005;21:1017–27.

    Article  PubMed  CAS  Google Scholar 

  36. Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11:7.

    Article  PubMed  Google Scholar 

  37. Schutte UM, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, et al. Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol. 2008;80:365–80.

    Article  PubMed  CAS  Google Scholar 

  38. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res. 2007;14:169–81.

    Article  PubMed  CAS  Google Scholar 

  39. Feller M, Huwiler K, Stephan R, Altpeter E, Shang A, Furrer H, et al. Mycobacterium avium subspecies paratuberculosis and Crohn’s disease: a systematic review and meta-analysis. Lancet Infect Dis. 2007;7:607–13.

    Article  PubMed  Google Scholar 

  40. Barnich N, Darfeuille-Michaud A. Adherent-invasive Escherichia coli and Crohn’s disease. Curr Opin Gastroenterol. 2007;23:16–20.

    Article  PubMed  Google Scholar 

  41. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–41.

    Article  PubMed  CAS  Google Scholar 

  42. Hall JA, Bouladoux N, Sun CM, Wohlfert EA, Blank RB, Zhu Q, et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity. 2008;29:637–49.

    Article  PubMed  CAS  Google Scholar 

  43. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105:16731–6.

    Article  PubMed  CAS  Google Scholar 

  44. Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15:1183–9.

    Article  PubMed  CAS  Google Scholar 

  45. Duncan SH, Hold GL, Harmsen HJ, Stewart CS, Flint HJ. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol. 2002;52:2141–6.

    Article  PubMed  CAS  Google Scholar 

  46. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.

    Article  PubMed  CAS  Google Scholar 

  47. Aomatsu T, Imaeda H, Matsumoto K, Kimura E, Yoden A, Tamai H, et al. Faecal chitinase 3-like-1: a novel biomarker of disease activity in paediatric inflammatory bowel disease. Aliment Pharmacol Ther. 2011;34:941–8.

    Article  PubMed  CAS  Google Scholar 

  48. Aomatsu T, Yoden A, Matsumoto K, Kimura E, Inoue K, Andoh A, et al. Fecal calprotectin is a useful marker for disease activity in pediatric patients with inflammatory bowel disease. Dig Dis Sci. 2011;56:2372–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the technical support of TechnoSuruga Laboratory Co., Ltd. (Shizuoka, Japan) and would like to express their thanks.

Conflict of interest

The authors have no conflict of interests to declare in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Andoh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 237 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andoh, A., Kuzuoka, H., Tsujikawa, T. et al. Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn’s disease. J Gastroenterol 47, 1298–1307 (2012). https://doi.org/10.1007/s00535-012-0605-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-012-0605-0

Keywords

Navigation