Skip to main content
Log in

New Targets in the Drug Treatment of Heart Failure

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Heart failure is a complex syndrome that has been a major contributor to readmissions into hospitals in the USA. Currently, a large number of medications are being used to treat the symptoms of the disease—digoxin, diuretics, renin-angiotensin-aldosterone system inhibitors, β-blockers, and vasodilators. There is no doubt that the given pharmaceutical therapy has been effective in lowering hospital readmission rates and prolonging life in individual chronic heart failure patients. Despite this, admission rates following heart failure hospitalization remain high, resulting in a substantial financial strain on healthcare institutions. Clearly, there is much room for improvement in heart failure therapy and management in reducing readmission rates. In this review, we address the unmet needs in the current drug treatment of chronic heart failure and describe novel drug targets that are currently under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD. Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol. 1995;26:1257–63.

    Article  CAS  PubMed  Google Scholar 

  2. CIBIS-II Investigators and Committees. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet. 1999;353:9–13.

    Article  Google Scholar 

  3. Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail. 2008;10:933–89.

    Article  PubMed  Google Scholar 

  4. Hunt SA, et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53:e1–90.

    Article  PubMed  Google Scholar 

  5. Lloyd-Jones D, et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–215.

    Article  PubMed  Google Scholar 

  6. Fang J, Mensah GA, Croft JB, Keenan NL. Heart failure-related hospitalization in the US, 1979 to 2004. J Am Coll Cardiol. 2008;52:428–34.

    Article  PubMed  Google Scholar 

  7. Gheorghiade M. Acute heart failure syndromes. J Am Coll Cardiol. 2009;53:557–73.

    Article  PubMed  Google Scholar 

  8. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–292.

    Article  PubMed  Google Scholar 

  9. López-Sendón J, et al. Expert consensus document on angiotensin converting enzyme inhibitors in cardiovascular disease. The Task Force on ACE inhibitors of the European Society of Cardiology. Eur Heart J. 2004;25:1454–70.

    Article  PubMed  Google Scholar 

  10. López-Sendón J, et al. Expert consensus document on β-adrenergic receptor blockers. Task Force on beta-blockers of the European Society of Cardiology. Eur Heart J. 2004;25:1341–62.

    Article  PubMed  Google Scholar 

  11. Solomon SD, et al. Effect of angiotensin receptor blockade and antihypertensive drugs on diastolic dysfunction: a randomized trial. Lancet. 2007;369 (9579): 2079–87 (→ ARB in HFpEF).

  12. Hernandez AF, Hammill BG, O’Connor CM, Schulman KA, Curtis LH, Fonarow GC. Clinical effectiveness of beta-blockers in heart failure: findings from the OPTIMIZE-HF registry. J Am Coll Cardiol. 2009;53(2):184–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pitt B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370:1383–92.

    Article  CAS  PubMed  Google Scholar 

  14. Kazuhiro Y, et al. Effects of carvedilol on heart failure with preserved ejection fraction: the Japanese Diastolic Heart Failure Study (J-DHF). Eur J of Heart Failure. 2014;15(1):110–8.

    Google Scholar 

  15. Massie BM, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Eng J Med. 208;359:2456–67.

  16. Paulus WJ, Ballegoij J. Treatment of heart failure with normal ejection fraction: an inconvenient truth! J Am Coll Cardiol. 2010;55(6):526–37.

    Article  PubMed  Google Scholar 

  17. The Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure. N Eng J Med. 1997;336:525–33.

    Article  Google Scholar 

  18. WRITING COMMITTEE MEMBERS, Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL, American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):e240–327. doi:10.1161/CIR.0b013e31829e8776.

    Article  Google Scholar 

  19. Dumic J, Dabelic S, Flögel M. Galectin-3: an open-ended story. Biochim Biophys Acta. 2006;1760(4):616–35.

    Article  CAS  PubMed  Google Scholar 

  20. Kim HR, Lin HM, Biliran H, Raz A. Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells. Cancer Res. 1999;59(16):4148–54.

    CAS  PubMed  Google Scholar 

  21. van der Velde AR, Gullestad L, Ueland T, Aukrust P, Guo Y, Adourian A, Muntendam P, van Veldhuisen DJ, de Boer RA. Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circ Heart Fail. 2013;6(2):219–26. doi:10.1161/CIRCHEARTFAILURE.112.000129.

    Article  PubMed  CAS  Google Scholar 

  22. Lok DJ, Van Der Meer P, de la Porte PW, Lipsic E, Van Wijngaarden J, Hillege HL, van Veldhuisen DJ. Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol. 2010;99(5):323–8. doi:10.1007/s00392-010-0125-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gullestad L, Ueland T, Kjekshus J, Nymo SH, Hulthe J, Muntendam P, McMurray JJ, Wikstrand J, Aukrust P. The predictive value of galectin-3 for mortality and cardiovascular events in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). Am Heart J. 2012;164(6):878–83. doi:10.1016/j.ahj.2012.08.021.

    Article  CAS  PubMed  Google Scholar 

  24. van Kimmenade RR, Januzzi JL Jr, Ellinor PT, Sharma UC, Bakker JA, Low AF, Martinez A, Crijns HJ, MacRae CA, Menheere PP, Pinto YM. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48(6):1217–24.

    Article  PubMed  CAS  Google Scholar 

  25. Yu L, Ruifrok WP, Meissner M, Bos EM, van Goor H, Sanjabi B, van der Harst P, Pitt B, Goldstein IJ, Koerts JA, van Veldhuisen DJ, Bank RA, van Gilst WH, Silljé HH, de Boer RA. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail. 2013;6(1):107–17. doi:10.1161/CIRCHEARTFAILURE.112.971168.

    Article  CAS  PubMed  Google Scholar 

  26. Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B, André S, Crijns HJ, Gabius HJ, Maessen J, Pinto YM. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110(19):3121–8.

    Article  CAS  PubMed  Google Scholar 

  27. Liu YH, D’Ambrosio M, Liao TD, Peng H, Rhaleb NE, Sharma U, André S, Gabius HJ, Carretero OA. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol. 2009;296(2):H404–12. doi:10.1152/ajpheart.00747.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Calvier L, Miana M, Reboul P, Cachofeiro V, Martinez-Martinez E, de Boer RA, Poirier F, Lacolley P, Zannad F, Rossignol P, López-Andrés N. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol. 2013;33(1):67–75. doi:10.1161/ATVBAHA.112.300569.

    Article  CAS  PubMed  Google Scholar 

  29. Rasoul S, Carretero OA, Peng H, Cavasin MA, Zhuo J, Sanchez-Mendoza A, Brigstock DR, Rhaleb NE. Antifibrotic effect of Ac-SDKP and angiotensin-converting enzyme inhibition in hypertension. J Hypertens. 2004;22(3):593–603.

    Article  CAS  PubMed  Google Scholar 

  30. Ahmed A, et al. Heart failure, chronic diuretic use, and increase in mortality and hospitalization: an observational study using propensity score methods. Eur Heart J. 2006;27(12):1431–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lax A, et al. Mineralocorticoid receptor antagonists modulate galectin-3 and interleukin-33/ST2 signaling in left ventricular systolic dysfunction after acute myocardial infarction. JACC Heart Fail. 2015;3(1):50–8.

    Article  PubMed  Google Scholar 

  32. Weir R, et al. Galectin-3 and cardiac function in survivors of acute myocardial infarction. Circ Heart Fail. 2013;6:492–8.

    Article  CAS  PubMed  Google Scholar 

  33. Fiuzat M, et al. Relationship between galectin-3 levels and mineralocorticoid receptor antagonist use in heart failure: analysis from HF-ACTION. J Card Fail. 2014;20(1):38–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weinberg EO, Shimpo M, De Keulenaer GW, MacGillivray C, Tominaga S, Solomon SD, Rouleau JL, Lee RT. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocites and myocardial infarction. Circulation. 2002;106:2961–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ronco C, Costanzo MR, Bellomo R, Maisel A. Fluid overload: diagnosis and management. Contrib Nephrol. 2010;164:209–16.

    Article  Google Scholar 

  36. Sanada S, Hakuno D, Higgins LJ, et al. IL—33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117:1538–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Coyle AJ, Lloyd C, Tian J, et al. Crucial role of the interleukin-1 receptor family member T1/ST2 in T Helper cell type-2 mediated lung mucosal immune responses. J Exp Med. 1999;190:895–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schmitz J, Owyang A, Oldham E, et al. IL—33, an interleukin—1 like cytokine that signals via the IL—1 receptor related protein ST2 and induces T helper type-2 associated cytokines. Immunity. 2005;23:479–90.

    Article  CAS  PubMed  Google Scholar 

  39. Anand IS, Rector TS, Kuskowski M, Snider J, Cohn JN. Prognostic value of soluble ST2 in the Valsartan Heart Failure Trial. Circ Heart Fail. 2014;7(3):418–26.

    Article  CAS  PubMed  Google Scholar 

  40. Gaggin HK, Szymonikfa J, Bharadwaj A, et al. Head-to-head comparison of serial soluble ST2, growth differentiation factor-15, and highly sensitive troponin T measurements in patients with chronic heart failure. JACC Heart Fail. 2014;2(1):65–72.

    Article  PubMed  Google Scholar 

  41. Lassus J, Gayat E, Mueller C et al. Incremental value of biomarkers to clinical variables for mortality prediction in acutely decompensated heart failure: the multinational observational cohort on acute heart failure (MOCA) study. Int J Cardiol. 2013;163(3):2186–94.

    Article  Google Scholar 

  42. Mueller T, et al. Increased plasma concentrations of soluble ST2 are predictive for 1-year mortality in patients with acute destabilized heart failure. Clin Chem. 2008;54:752–6.

    Article  CAS  PubMed  Google Scholar 

  43. Jougasaki M, et al. Adrenomedullin in experimental congestive heart failure: cardiorenal activation. Am J Physiol. 1997;273(4 Pt 2):R1392–9.

    CAS  PubMed  Google Scholar 

  44. Hirayama N, et al. Molecular forms of circulating adrenomedullin in patients with congestive heart failure. J Endocrinol. 1999;160:297–303.

    Article  CAS  PubMed  Google Scholar 

  45. Daggubati S, et al. Adrenomedullin, endothelin, neuropeptide Y, atrial, brain, and C-natriuretic prohormone peptides compared as early heart failure indicators. Cardiovasc Res. 1997;36:246–55.

    Article  CAS  PubMed  Google Scholar 

  46. Jougasaki M, Grantham JA, Redfield MM, Burnett JC Jr. Regulation of cardiac adrenomedullin in heart failure. Peptides. 2001;22:1841–50.

    Article  CAS  PubMed  Google Scholar 

  47. Meeran K, O’Shea D, Upton PD, et al. Circulating adrenomedullin does not regulate systemic blood pressure but increases plasma prolactin after intravenous infusion in humans: a pharmacokinetic study. J Clin Endocrinol Metab. 1997;82:95–100.

    CAS  PubMed  Google Scholar 

  48. Peacock WF, Nowak R, Christenson R, et al. Short-term mortality risk in emergency department acute heart failure. Acad Emerg Med. 2011;18:947–58.

    Article  PubMed  Google Scholar 

  49. Maisel A, Mueller C, Nowak R, et al. Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J Am Coll Cardiol. 2010;55(19):206276.

    Article  CAS  Google Scholar 

  50. Xue Y, Taub P, Iqbal N, Fard A, Clopton P, Maisel A. Mid-region pro-adrenomedullin adds predictive value to clinical predictors and Framingham risk score for long-term mortality in stable outpatients with heart failure. Eur J Heart Fail. 2013;15(12):1343–9.

    Article  CAS  PubMed  Google Scholar 

  51. Von Haehling S, Filipatos GS, Papassotiriou J, et al. Mid-regional pro-adrenomedullin as a novel predictor of mortality in patients with chronic heart failure. Eur J Heart Fail. 2010;12:484–91.

    Article  Google Scholar 

  52. Sanghi P, Uretsky BF, Schwarz ER. Vasopressin antagonism: a future treatment option in heart failure. Eur Heart J. 2005;26(6):538–43.

    Article  CAS  PubMed  Google Scholar 

  53. Izumi Y, Miura K, Iwao H. Therapeutic potential of vasopressin-receptor antagonists in heart failure. J Pharmacol Sci. 2014;124(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  54. Costello-Boerrigter LC, Smith WB, Boerrigter G, Ouyang J, Zimmer CA, Orlandi C, Burnett JC Jr. Vasopressin-2-receptor antagonism augments water excretion without changes in renal hemodynamics or sodium and potassium excretion in human heart failure. Am J Physiol Renal Physiol. 2006;290(2):F273–8.

  55. Abraham WT, Shamshirsaz AA, McFann K, Oren RM, Schrier RW. Aquaretic effect of lixivaptan, an oral, non-peptide, selective V2 receptor vasopressin antagonist, in New York Heart Association functional class II and III chronic heart failure patients. J Am Coll Cardiol. 2006;47(8):1615–21.

    Article  CAS  PubMed  Google Scholar 

  56. Lanfear DE, et al. Association of arginine vasopressin levels with outcomes and the effect of V2 blockade in patients hospitalized for heart failure with reduced ejection fraction: insights from the EVEREST trial. Circ Heart Fail. 2013;6:47–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Freixa X, Heras M, Ortiz JT, Argiro S, Guasch E, Doltra A, Jimenez M, Betriu A, Masotti M. Usefulness of endothelin-1 assessment in acutemyocardial infarction. Rev Esp Cardiol. 2011;64:105–10.

    Article  PubMed  Google Scholar 

  58. Jain D, Schafer U, Dendorfer A, Kurz T, Lindemann C, Tolg R, Hartmann F, Katus HA, Richardt G. Neurohumoral activation in percutaneous coronary interventions: apropos of ten vasoactive substances during and immediately following coronary rotastenting. Indian Heart J. 2001;53:301–7.

    CAS  PubMed  Google Scholar 

  59. Stewart DJ, Kubac G, Costello KB, Cernacek P. Increased plasma endothelin-1 in the early hours of acute myocardial infarction. J Am Coll Cardiol. 1991;18:38–43.

    Article  CAS  PubMed  Google Scholar 

  60. Mayyas F, Al-Jarrah M, Ibrahim K, Mfady D, Van Wagoner DR. The significance of circulating endothelin-1 as a predictor of coronary artery disease status and clinical outcomes following coronary artery catheterization. Cardiovasc Pathol. 2015;24(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  61. Stewart DJ, Kubac G, Costello KB, Cernacek P. Increased plasma endothelin-1 in the early hours of acute myocardial infarction. J Am Coll Cardiol. 1991;18(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  62. Stewart DJ, Kubac G, Costello KB, Cernacek P. Endothelin-1 and endothelin receptor antagonists as potential cardiovascular therapeutic agents. J Am Coll Cardiol. 1991;18(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  63. Krum H, Massie B, Abraham WT, et al. Direct renin inhibition in addition to or as an alternative to angiotensin converting enzyme inhibition in patients with chronic systolic heart failure: rational and design of the Aliskiren Trial to Minimize OutcomeS in Patients with HEeart failuRE (ATMOSPHERE) study. Eur J Heart Fail. 2011;13:107–14. doi:10.1093/eurjhfq212.

    Article  CAS  PubMed  Google Scholar 

  64. Krum H, Maggioni A. Renin inhibitors in chronic heart failure: the aliskiren observation of heart failure treatment study in context. Clin Cardiol. 2010;33(9):536–41. doi:10.1002/clc.20828.

    Article  PubMed  Google Scholar 

  65. McMurray JJV, Pitt B, Latini R, et al. Effects of the oral direct renin inhibitor aliskiren in patients with symptomatic heart failure. Circ Heart Fail. 2008;1:17–24. doi:10.1161/CIRCHEARTFAILURE.107.740704.

    Article  CAS  PubMed  Google Scholar 

  66. Shehata M, Youssef F, Pater A. Aliskiren: is combination therapy with angiotensin converting enzyme inhibitors (ACE-I) or angiotensin receptor blockers (ARBS) still a possibility? Int J Cardiovasc Res. 2012;1:2. doi:10.4172/2324-8602.1000e106.

    Article  Google Scholar 

  67. Vardeny O, Miller R, Solomon SD. Combined neprilysin and renin-angiotensin system inhibition for the treatment of heart failure. JACC Heart Fail. 2014;. doi:10.1016/j.jchf.2014.09.001.

    PubMed  Google Scholar 

  68. McMurray JJV, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004. doi:10.1056/NEJMoa1409077.

    Article  PubMed  CAS  Google Scholar 

  69. McMurray JJV, Packer M, Desai AS, et al. Dual angiotensin receptor and neprilysin inhibition as an alternative to angiotensin-converting enzyme inhibition in patients with chronic systolic heart failure: rationale for and design of the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure trail (PARADIGM-HF). Eur J Heart Fail. 2013;15:1062–73. doi:10.1093/eurjhft052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sulfi S, Timmis AD. Ivabradine—the first selective sinus node I(f) channel inhibitor in the treatment of stable angina. Int J Clin Pract. 2006;60(2):222–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Swedberg K, Komajda M, Böhm M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L, SHIFT Investigators. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet. 2010;376(9744):875–85. doi:10.1016/S0140-6736(10)61198-1.

    Article  CAS  PubMed  Google Scholar 

  72. Marquis-Gravel G, Tardif JC. Ivabradine: the evidence of its therapeutic impact in angina. Core Evid. 2008;3(1):1–12. doi:10.3355/ce.2008.008.

    PubMed  PubMed Central  Google Scholar 

  73. Fox K, Ford I, Steg PG, Tendera M. Ferrari R; BEAUTIFUL Investigators. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372(9641):807–16. doi:10.1016/S0140-6736(08)61170-8.

    Article  CAS  PubMed  Google Scholar 

  74. Scicchitano P, Cortese F, Ricci G, Carbonara S, Moncelli M, Iacoviello M, Cecere A, Gesualdo M, Zito A, Caldarola P, Scrutinio D, Lagioia R, Riccioni G, Ciccone MM. Ivabradine, coronary artery disease, and heart failure: beyond rhythm control. Drug Des Devel Ther. 2014;3(8):689–700. doi:10.2147/DDDT.S60591.

    Google Scholar 

  75. Amano M, Nakayama M, Kailbuchi K. Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken). 2010;67(9):545–54. doi:10.1002/cm.20472.

  76. Loirand G, Guerin P, Pacuad P. Rho-kinase in cardiovascular physiology and pathophysiology. Circ Res. 2006;98:322–34. doi:10.1161/01.RES.0000201960.04223.3c.

    Article  CAS  PubMed  Google Scholar 

  77. Vahebi S, Kobayashi T, Warren CM, de Tombe PP, Solaro RJ. Functional effects of rho-kinase-dependent phosphorylation of specific sites on cardiac troponin. Circ Res. 2005;96:740–7.

    Article  CAS  PubMed  Google Scholar 

  78. Mori K, Amano M, Takefuji M, Kato K, Morita Y, Nishioka T, Matsuura Y, Murohara T, Kaibuchi K. Rho-Kinase contributes to sustained RhoA activation through phosphorylation of p190A RhoGAP. J Biol Chem. 2009;284(8):5067–76. doi:10.1074/jbc.M806853200 (Epub 2008 Dec 22).

    Article  CAS  PubMed  Google Scholar 

  79. Bulhak A, Roy J, Hedin U, Sjoquist PO, Pernow J. Cardioprotective effect of rosuvastatin in vivo is dependent on inhibition of geranylgeranyl pyrophosphate and altered RhoA membrane translocation. Am J Physiol Heart Circ Physiol. 2007;292(6):H3158–63 (Epub 2007 Feb 23).

    Article  CAS  PubMed  Google Scholar 

  80. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389:990–4.

    Article  CAS  PubMed  Google Scholar 

  81. Mack CP, Somlyo AV, Hautmann M, Somlyo AP, Owens GK. Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J Biol Chem. 2001;276:341–7.

    Article  CAS  PubMed  Google Scholar 

  82. Torsoni AS, Fonseca PM, Crosara-Alberto DP, Franchini KG. Early activation of p160ROCK by pressure overload in rat heart. Am J Physiol Cell Physiol. 2003;284:C1411–9.

    Article  CAS  PubMed  Google Scholar 

  83. Takata M, Tanaka H, Kimura M, Nagahara Y, Tanaka K, Kawasaki K, Seto M, Tsuruma K, Shimazawa M, Hara H. Fasudil, a who kinase inhibitor, limits motor neuron loss in experimental models of amyotrophic lateral sclerosis. Br J Pharmacol. 2013;170(2):341–51. doi:10.1111/bph.12277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ho TJ, Huang CC, Huang CY, Lin WT. Fasudil, a rho-kinase inhibitor, protects against excessive endurance exercise training induced cardiac hypertrophy, apoptosis, and fibrosis in rats. Eur J Appl Physiol. 2012;112(8):2943–55. doi:10.1007/s00421-011-2270-z (Epub 2011 Dec 9).

    Article  CAS  PubMed  Google Scholar 

  85. Neverova N, Teerlink JR. Serelaxin : a potential new drug for the treatment of acute heart failure. Expert Opin Investig Drugs. 2014;23(7):1017–26.

    Article  CAS  PubMed  Google Scholar 

  86. Chan LJ, Hossain MA, Samuel CS, et al. The relaxin peptide family—structure, function and clinical applications. Protein Pept Lett. 2011;18(3):220–9.

    Article  CAS  PubMed  Google Scholar 

  87. Dschietzig T, Teichman S, Unemori E, et al. Intravenous recombinant human relaxin in compensated heart failure a safety, tolerability, and pharmacodynamic trial. J Card Fail. 2009;15(3):182–90.

    Article  CAS  PubMed  Google Scholar 

  88. Teerlink JR, Metra M, Felker GM, et al. Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebocontrolled, parallel-group, dose-finding phase IIb study. Lancet. 2009;373(9673):1429–39.

    Article  CAS  PubMed  Google Scholar 

  89. Varr BC, Maurer MS. Emerging role of serelaxin in the therapeutic armamentarium for heart failure. Curr Atheroscler Rep. 2014;16(10):447.

    Article  PubMed  CAS  Google Scholar 

  90. Green SJ, et al. The cGMP Signaling pathway as a therapeutic target in heart failure with preserved ejection fraction. J Am Heart Assoc. 2013;2(6):e000536.

  91. Heerebeek L, et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation. 2012;126:830–9.

    Article  PubMed  CAS  Google Scholar 

  92. Sawyer DB, Caggiano A. Neuregulin-1β for the treatment of systolic heart failure. J Mol Cell Cardiol. 2011;51:501–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Galindo CL, Ryzhov S, Sawyer DB. Neuregulin as a heart failure therapy and mediator of reverse remodeling. Curr Heart Fail Rep. 2014;11(1):40–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li B, Zheng Z, Wei Y, et al. Therapeutic effects of neuregulin-1 in diabetic cardiomyopathy rats. Cardiovasc Diabetol. 2011;10:69.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Liu X, Gu X, Li Z, et al. Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy. J Am Coll Cardiol. 2006;48:1438–47.

    Article  CAS  PubMed  Google Scholar 

  96. Jabbour A, Hayward CS, Keogh AM, et al. parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur J Heart Fail. 2011;13:83–92.

    Article  CAS  PubMed  Google Scholar 

  97. Gao R, Zhang J, Cheng L, et al. A Phase II, randomized, double-blind, multicenter, based on standard therapy, placebocontrolled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J Am Coll Cardiol. 2010;55:1907–14.

    Article  CAS  PubMed  Google Scholar 

  98. Lyon AR, Bannister ML, Collins T, et al. SERCA2a Gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure. Circ Arrhythm Electrophysiol. 2011;4:362–72. doi:10.1161/CIRCEP.110.961615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sikkel MB, Hayward C, MacLeod KT, Harding SE, Lyon AR. SERCA2a gene therapy in heart failure: an anti-arrhythmic positive inotrope. Br J Pharmacol. 2014;171:38–54. doi:10.1111/bph.12472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Giacca M, Baker AH. Heartening results: the CUPID gene therapy trial for heart failure. Mol Ther. 2011;19(7):1181–2. doi:10.1038/mt.2011.123.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bround MJ, Wambolt R, Luciani DS, Kulpa JE, Rodrigues B, Brownsey RW, Allard MF, Johnson JD. Cardiomyocyte ATP production, metabolic flexibility, and survival require calcium flux through cardiac ryanodine receptors in vivo. J Biol Chem. 2013;288(26):18975–86. doi:10.1074/jbc.M112.427062 (PMID 23678000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dulhunty AF, Pouliquin P. What we don’t know about the structure of ryanodine receptor calcium release channels. Clin Exp Pharmacol Physiol. 2003;30:713–23.

    Article  CAS  PubMed  Google Scholar 

  103. Wehrens XH, Marks AR. Altered function and regulation of cardiac ryanodine receptors in cardiac disease. Trends Biochem Sci. 2003;28:671–8.

    Article  CAS  PubMed  Google Scholar 

  104. Cheng Y, Zhan Q, Zhao J, Xiao J. Stabilizing ryanodine receptor type 2: a novel strategy for the treatment of atrial fibrillation. Med Sci Monit. 2010;16(7):HY23–6.

  105. Sacherer M, Sedej S, Wakula P, Wallner M, Vos MA, Kockskamper J, Stiegler P, Sereinigg M, von Lewinski D, Antoons G, Pieske BM, Heinzel FR. JTV519 (K201) reduces sarcoplasmic reticulum Ca2+ leak and improves diastolic function in vitro in murine and human non-failing myocardium. Br J Pharmacol. 2012;167(3):493–504. doi:10.1111/j.1476-5381.2012.01995.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xander HT, Wehrens SE, Lehnart SR, Reiken SD, Vest JA, Cervantes D, Coromilas J, Landry DW, Marks AR. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Sci J. 2004;304(5668):292–6.

    Article  CAS  Google Scholar 

  107. Kaye DM, Krum H. Drug discovery for heart failure: a new era or the end of a pipeline? Nat Rev Drug Discov. 2007;6(2):127–39.

    Article  CAS  PubMed  Google Scholar 

  108. Masson S, Latini R, Anand IS, Barlera S, Angelici L, Vago T, Tognoni G, Cohn JN. Prognostic value of changes in N-terminal pro-brain natriuretic peptide in Val-HeFT(Val- sartan Heart Failure Trial). J Am Coll Cardiol. 2008;52:997–1003.

    Article  CAS  PubMed  Google Scholar 

  109. Felker GM, Hasselblad V, Hernandez AF, O’Connor CM. Biomarker-guided therapy in chronic heart failure: a meta-analysis of randomized controlled trials. Am Heart J. 2009;158:422–30.

    Article  CAS  PubMed  Google Scholar 

  110. Maisel A, Januzzi, Xue Y, Silver MA. Post-acute care: the role of natriuretic peptides. Congest Heart Fail. 2012;18(Suppl 1):S14–6. doi:10.1111/j.1751-7133.2012.00304.x.

  111. Chowdhury P, Choudhary R, Maisel A. The appropriate use of biomarkers in heart failure. Med Clin North Am. 2012;96(5):901–13. doi:10.1016/j.mcna.2012.07.002.

    Article  CAS  PubMed  Google Scholar 

  112. Maisel AS, Daniels LB. Breathing not properly 10 years later: what we have learned and what we still have to learn. J Am Coll Cardiol. 2012;60(4):277–82. doi:10.1016/j.jacc.2012.03.057.

Download references

Compliance with Ethical Standards

Funding

No funding was received in the writing of this review.

Conflicts of interest

Alan Maisel is currently a consultant for Spingotec and a speaker for Alere and Critical DX. He also conducts research for Novartis, Alere, Abbott, and Roche. James Iwaz, Elizabeth Lee, Hermineh Aramin, Danilo Romero, Navaid Iqbal, Matt Kawahara, Fatima Khusro, Brian Knight, Minal Patel, and Sumita Sharma have no potential conflicts of interest that might be relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan S. Maisel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwaz, J.A., Lee, E., Aramin, H. et al. New Targets in the Drug Treatment of Heart Failure. Drugs 76, 187–201 (2016). https://doi.org/10.1007/s40265-015-0498-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-015-0498-3

Keywords

Navigation