Skip to main content

Advertisement

Log in

Drug-Induced Liver Injury: Highlights of the Recent Literature

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Drug-induced liver injury (DILI), herbal-induced liver injury, and herbal and dietary supplement (HDS)-induced liver injury are an important aspect of drug safety. Knowledge regarding responsible drugs, mechanisms, risk factors, and the diagnostic tools to detect liver injury have continued to grow in the past year. This review highlights what we considered the most significant publications from among more than 1800 articles relating to liver injury from medications, herbal products, and dietary supplements in 2017 and 2018. The US Drug-Induced Liver Injury Network (DILIN) prospective study highlighted several areas of ongoing study, including the potential utility of human leukocyte antigens and microRNAs as DILI risk factors and new data on racial differences, the role of alcohol consumption, factors associated with prognosis, and updates on the clinical signatures of autoimmune DILI, thiopurines, and HDS agents. Novel data were also generated from the Spanish and Latin American DILI registries as well as from Chinese and Korean case series. A few new agents causing DILI were added to the growing list in the past 2 years, including sodium–glucose co-transporter-2 inhibitors, as were new aspects of chemotherapy-associated liver injury. A number of cases reported previously described hepatotoxins confirmed via the Roussel Uclaf Causality Assessment Method (RUCAM; e.g., norethisterone, methylprednisolone, glatiramer acetate) and/or the DILIN method (e.g., celecoxib, dimethyl fumarate). Additionally, much work centered on elucidating the pathophysiology of DILI, including the importance of bile salt export pumps and immune-mediated mechanisms. Finally, it must be noted that, while hundreds of new studies described DILI in 2017–2018, the quality of such reports must always be addressed. Björnsson reminds us to remain very critical of the data when addressing the future utility of a study, which is why it is so important to adhere to a standardized method such as RUCAM when determining DILI causality. While drug-induced hepatotoxicity remains a diagnosis of exclusion, the diverse array of publications that appeared in 2017 and 2018 provided important advances in our understanding of DILI, paving the way for our improved ability to make a more definitive diagnosis and risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Boer YS, Kosinski AS, Urban TJ, Zhao Z, Long N, Chalasani N, et al. Features of autoimmune hepatitis in patients with drug-induced liver injury. Clin Gastroenterol Hepatol. 2017;15(1):103–12.

    Article  PubMed  Google Scholar 

  2. Nicoletti P, Aithal GP, Bjornsson ES, Andrade R, Sawle A, Arrese M, International Drug-Induced Liver Injury Consortium, Drug-Induced Liver Injury Network Investigators, and International Serious Adverse Events Consortium, et al. Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in HLA and other genes in a genome-wide association study. Gastroenterology. 2017;152(5):1078–89.

    Article  CAS  PubMed  Google Scholar 

  3. Urban TJ, Nicoletti P, Chalasani N, Serrano J, Stolz A, Daly A, et al. Minocycline hepatotoxicity: clinical characterization and identification of HLA-B*35:02 as a risk factor. J Hepatol. 2017;67(1):137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Whritenour J, Ko M, Zong Q, Wang J, Tartaro K, Schneider P, et al. Development of a modified lymphocyte transformation test for diagnosing drug-induced liver injury associated with an adaptive immune response. J Immunotoxicol. 2017;14(1):31–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Russo MW, Steuerwald N, Norton HJ, Anderson WE, Foureau D, Chalasani N, et al. Profiles of miRNAs in serum in severe acute drug induced liver injury and their prognostic significance. Liver Int. 2017;37(5):757–64.

    Article  CAS  PubMed  Google Scholar 

  6. Bonkovsky HL, Kleiner DE, Gu J, Odin JA, Russo MW, Navarro VM, et al. Clinical presentations and outcomes of bile duct loss caused by drugs and herbals and dietary supplements. Hepatology. 2017;65(4):1267–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Navarro VJ, Khan I, Björnsson E, Seeff LB, Serrano J, Hoofnagle JH. Liver injury from herbal and dietary supplements. Hepatology. 2017;65(1):363–73.

    Article  CAS  PubMed  Google Scholar 

  8. Vega M, Verma M, Beswick D, Bey S, Hossack J, Merriman N, et al. The incidence of drug- and herbal and dietary supplement-induced liver injury: preliminary findings from gastroenterologist-based surveillance in the population of the state of Delaware. Drug Saf. 2017;40(9):783–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suzuki A, Barnhart H, Gu J, Bonkovsky HL, Tillmann HL, Fontana RJ, et al. Associations of gender and a proxy of female menopausal status with histological features of drug-induced liver injury. Liver Int. 2017;37:1723–30.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chalasani N, Reddy KR, Fontana RJ, Barnhart H, Gu J, Hayashi PH, et al. Idiosyncratic drug induced liver injury in african-americans is associated with greater morbidity and mortality compared to Caucasians. Am J Gastroenterol. 2017;112(9):1382–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hayashi PH, Rockey DC, Fontana RJ, Tillmann HL, Kaplowitz N, Barnhart HX, et al. Death and liver transplantation within 2 years of onset of drug-induced liver injury. Hepatology. 2017;66(4):1275–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dakhoul L, Ghabril M, Gu J, Navarro V, Chalasani N, Serrano J, United States Drug Induced Liver Injury Network. Heavy consumption of alcohol is not associated with worse outcomes in patients with idiosyncratic drug-induced liver injury compared to non-drinkers. Clin Gastroenterol Hepatol. 2018;16(5):722–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ahmad J, Rossi S, Rodgers SK, Ghabril M, Fontana RJ, Stolz A, et al. Sclerosing cholangitis-like changes on magnetic resonance cholangiography in patients with drug induced liver injury. Clin Gastroenterol Hepatol. 2018. https://doi.org/10.1016/j.cgh.2018.06.035.

    Article  PubMed  Google Scholar 

  14. Fontana RJ, et al. The role of HLA-A*33:01 in patients with cholestatic hepatitis attributed to terbinafine. J Hepatol. 2018. https://doi.org/10.1016/j.jhep.2018.08.004.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zoubek ME, González-Jimenez A, Medina-Cáliz I, Robles-Díaz M, Hernandez N, Romero-Gómez M, et al. High prevalence of ibuprofen drug-induced liver injury in Spanish and Latin-American Registries. Clin Gastroenterol Hepatol. 2018;16(2):292–4.

    Article  PubMed  Google Scholar 

  16. Medina-Caliz I, Garcia-Cortes M, Gonzalez-Jimenez A, Cabello MR, Robles-Diaz M, Sanabria-Cabrera J, Spanish DILI Registry, et al. Herbal and dietary supplement-induced liver injuries in the Spanish DILI Registry. Clin Gastroenterol Hepatol. 2018;16(9):1495–502.

    Article  PubMed  Google Scholar 

  17. Bjornsson E, Jiezhun G, Kleiner D, Chalasani N, Hayashi P, Hoofnagle J. Azathioprine and 6-mercaptopurine-induced liver injury: clinical features and outcomes. J Clin Gastroenterol. 2017;51(1):63–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Björnsson ES, Bergmann O, Jonasson JG, Grondal G, Gudbjornsson B, Olafsson S. Drug-induced autoimmune hepatitis: response to corticosteroids and lack of relapse after cessation of steroids. Clin Gastroenterol Hepatol. 2017;15(10):1635–6.

    Article  PubMed  Google Scholar 

  19. Yu YC, Mao YM, Chen CW, Chen JJ, Chen J, Cong WM, et al. CSH guidelines for the diagnosis and treatment of drug-induced liver injury. Hepatol Int. 2017;11(3):221–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cho JH, Oh DS, Hong SH, Ko H, Lee NH, Park SE, et al. A nationwide study of the incidence rate of herb-induced liver injury in Korea. Arch Toxicol. 2017;91(12):4009–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Melchart D, Hager S, Albrecht S, Dai J, Weidenhammer W, Teschke R. Herbal traditional Chinese medicine and suspected liver injury: a prospective study. World J Hepatol. 2017;9(29):1141–57.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dalal KK, Holdbrook T, Peikin SR. Ayurvedic drug induced liver injury. World J Hepatol. 2017;9(31):1205–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shaikh SA, Tischer S, Choi EK, Fontana RJ. Good for the lung but bad for the liver? Garlic-induced hepatotoxicity following liver transplantation. J Clin Pharm Ther. 2017;42(5):646–8.

    Article  CAS  PubMed  Google Scholar 

  24. Xiao A, He HY, Chen Q, Ma SW. Drug-induced liver injury due to Lepidium meyenii (Maca) medicinal liquor. Chin Med J (Engl). 2017;130(24):3005–6.

    Article  Google Scholar 

  25. Li H, Wang X, Liu Y, Pan D, Wang Y, Yang N, et al. Hepatoprotection and hepatotoxicity of Heshouwu, a Chinese medicinal herb: context of the paradoxical effect. Food Chem Toxicol. 2017;108(Pt B):407–18.

    Article  CAS  PubMed  Google Scholar 

  26. Tayabali K, Bolzon C, Foster P, Patel J, Kalim MO. Kratom: a dangerous player in the opioid crisis. J Community Hosp Intern Med Perspect. 2018;8(3):107–10.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fluyau D, Revadigar N. Biochemical benefits, diagnosis and clinical risks evaluation of Kratom. Front Psychiatry. 2017;8:62.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chang-Chien G, Odonkor C, Amorapanth P. Is kratom the new ‘legal high’ on the block? The case of an emerging opioid receptor agonist with substance abuse potential. Pain Physician. 2017;20(1):E195–8.

    PubMed  Google Scholar 

  29. Kothadia J, Kaminski M, Samant H, Olivera-Martinez M. Hepatotoxicity associated with use of the weight loss supplement Garcinia cambogia: a case report and review of the literature. Case Rep Hepatol. 2018;2018:6483605.

    Google Scholar 

  30. Sharma A, Akagi E, Njie A, Goyal S, Arsene C, Krishnamoorthy G, et al. Acute hepatitis due to Garcinia cambogia extract, an herbal weight loss supplement. Case Rep Gastrointest Med. 2018;2018:6360543.

    Google Scholar 

  31. Corey R, Werner K, Singer A, Moss A, Smith M, Noelting J, et al. Acute liver failure associated with Garcinia cambogia use. Ann Heptaol. 2016;15(1):123–6.

    Article  Google Scholar 

  32. Lunsford K, Bodzin A, Reino D, Wang HL, Busuttil RW. Dangerous dietary supplements: Garcinia cambogia-associated hepatic failure requiring transplantation. World J Gastroenterol. 2016;22(45):10071–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cescioli G, Lombardi N, Bettiol A, Marconi E, Risaliti F, Bertoni M, et al. Acute liver injury following Garcinia cambogia weight-loss supplementation: case series and literature review. Intern Emerg Med. 2018;13(6):857–72.

    Article  Google Scholar 

  34. Phillips CA, Paramaguru R, Joy AK, Antony KL, Augustine P. Clinical outcomes, histopathological patterns, and chemical analysis of Ayurveda and herbal medicine associated with severe liver injury—a single center experience from southern india. Indian J Gastroenterol. 2018;37(1):9–17.

    Article  Google Scholar 

  35. Devarbhavi H. Ayurvedic and herbal medicine-induced liver injury: it is time to wake up and take notice. Indian J Gastroenterol. 2018;37(1):5–7.

    Article  PubMed  Google Scholar 

  36. Wang Y, Wang L, Saxena R, Wee A, Yang R, Tian Q, et al. Clinicopathological features of He Shou Wu-induced liver injury: this ancient anti-aging therapy is not liver-friendly. Liver Int. 2018. https://doi.org/10.1111/liv.13939.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mazzanti G, Moro P, Raschi E, Da Cas R, Menniti-Ippolito F. Adverse reactions to dietary supplements containing red yeast rice: assessment of cases from the Italian surveillance system. Br J Clin Pharmacol. 2017;83:894–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Teschke R, Schulze J, Eickhoff A. Drug induced liver injury: can biomarkers assist RUCAM in causality assessment? Int J Mol Sci. 2017;18:803.

    Article  CAS  PubMed Central  Google Scholar 

  39. Robles-Díaz M, Medina-Caliz I, Stephens C, Andrade RJ, Lucena MI. Biomarkers in DILI: one more step forward. Front Pharmacol. 2016;7:267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin H, Ewing LE, Koturbash I, Gurley BJ, Miousse IR. MicroRNAs as biomarkers for liver injury: current knowledge, challenges and future prospects. Food Chem Toxicol. 2017;110:229–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Church RJ, Watkins PB. The transformation in biomarker detection and management of drug-induced liver injury. Liver Int. 2017;37(11):1582–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mosedale M, Watkins P. Drug-induced liver injury: advances in mechanistic understanding that will inform risk management. Clin Pharmacol Ther. 2017;101(4):469–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kullak-Ublick GA, Andrade RJ, Merz M, End P, Benesic A, Gerbes AL, et al. Drug-induced liver injury: recent advances in diagnosis and risk assessment. Gut. 2017;66:1154–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Araújo AM, Carvalho M, Carvalho F, Bastos ML, Gueses de Pinho P. Metabolomic approaches in the discovery of potential urinary biomarkers of drug-induced liver injury (DILI). Crit Rev Toxicol. 2017;47(8):633–49.

    Article  CAS  PubMed  Google Scholar 

  45. Gonzalez-Jimenez A, McEuen K, Chen M, Suzuki A, Robles-Diaz M, Medina-Caliz I, et al. The influence of drug properties and host factors on delayed onset of symptoms in drug-induced liver injury. Liver Int. 2018. https://doi.org/10.1111/liv.13952.

    Article  PubMed  Google Scholar 

  46. Fang WC, Adler NR, Graudins LV, Goldblatt C, Goh MS, Roberts SK, et al. Drug-induced liver injury is frequently associated with severe cutaneous adverse drug reactions: experience from two Australian tertiary hospitals. Intern Med J. 2018;48(5):549–55.

    Article  CAS  PubMed  Google Scholar 

  47. McGill MR, Jaeschke H. Biomarkers of drug-induced liver injury: progress and utility in research, medicine and regulation. Expert Rev Mol Diagn. 2018;18(9):797–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Osanlou O, Pirmohamed M, Daly AK. Pharmacogenetics of adverse drug reactions. Adv Pharmacol. 2018;83:155–90.

    Article  CAS  PubMed  Google Scholar 

  49. Kaliyaperumal K, Grove JI, Delahay RM, Giffiths WJ, Duckworth A, Aithal GP. Pharmacogenomics of drug-induced liver injury (DILI): molecular biology to clinical applications. J Hepatol. 2018. https://doi.org/10.1016/j.jhep.2018.05.013.

    Article  PubMed  Google Scholar 

  50. Bessone F, Dirchwolf M, Rodil MA, Razori MV, Roma MG. Review article: drug-induced liver injury in the context of nonalcoholic fatty liver disease—a physiopathological and clinical integrated view. Aliment Pharmacol Ther. 2018;1:1. https://doi.org/10.1111/apt.14952.

    Article  CAS  Google Scholar 

  51. Kowalec K, Wright GE, Drogemoller BI, Aminkeng F, Bhavsar AP, Kingwell E, et al. Common variation near IRF6 is associated with IFN-beta-induced liver injury in multiple sclerosis. Nat Genet. 2018;50(8):1081–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marcinak JF, Munsaka MS, Watkins PB, Ohira T, Smith N. Liver safety of fasiglifam (TAK-875) in patients with type 2 diabetes: review of the global clinical trial experience. Drug Saf. 2018;41(6):625–40.

    Article  CAS  PubMed  Google Scholar 

  53. The Lancet. End of the road for daclizumab in multiple sclerosis. Lancet. 2018;391(10125):1000. https://doi.org/10.1016/s0140-6736(18)30565-8.

    Article  PubMed  Google Scholar 

  54. Buege MJ, Brown JE, Aitken SL. Solithromycin: a novel ketolide antibiotic. Am J Health Syst Pharm. 2017;74(12):875–87.

    Article  PubMed  Google Scholar 

  55. Roth F, Maiuri A, Ganey P. Idiosyncratic drug-induced liver injury: is drug-cytokine interaction the linchpin? J Pharmacol Exp Ther. 2017;360(2):461–70.

    Article  CAS  PubMed  Google Scholar 

  56. Jian J, Mathijs K, Timmermans L. Omics-based identification of the combined effects of idiosyncratic drugs and inflammatory cytokines on the development of drug-induced liver injury. Toxicol Appl Pharmacol. 2017;332:100–8.

    Article  CAS  Google Scholar 

  57. Kato R, Uetrecht J. Supernatant from hepatocyte cultures with drugs that cause idiosynratic liver injury activates macrophage inflammasomes. Chem Res Toxicol. 2017;30(6):1327–32.

    Article  CAS  PubMed  Google Scholar 

  58. Hu J, Ramshesh V, McGill M, Jaeschke H, Lemasters JJ. Low dose acetaminophen induces reversible mitochondrial dysfunction associated with transient c-Jun N-terminal kinase activation in mouse liver. Toxicol Sci. 2016;150(1):204–15.

    Article  CAS  PubMed  Google Scholar 

  59. Ramachandran A, Jaeschke H. Acetaminophen toxicity novel insights into mechanisms and future perspectives. Gene Expr. 2018;18(1):19–30.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pichler WJ, Tilch J. The lymphocyte transformation test in the diagnosis of drug hypersensitivity. Allergy. 2004;59(8):809–20.

    Article  CAS  Google Scholar 

  61. Saito M, Yagi M, Uno K, Takanaka K. Comparative study of the usefulness of the drug-induced lymphocyte stimulation test and the leukocyte migration test in drug allergies. Biol Pharm Bull. 2008;31(2):299–304.

    Article  CAS  PubMed  Google Scholar 

  62. Benesic A, Rotter I, Dragoi D, Weber S, Buchholtz ML, Gerbes AL. Development and validation of a test to identify drugs that cause idiosyncratic drug-induced liver injury. Clin Gastroenterol Hepatol. 2018;16(9):1488–94.

    Article  CAS  PubMed  Google Scholar 

  63. Bessone F. Predicting fatalities in serious idiosyncratic drug-induced liver injury—a matter of choosing the best Hy’s law. Transl Gastroenterol Hepatol. 2017;2:112.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bjornsson ES, Bjornsson HK. Mortality associated with drug-induced liver injury (DILI). Transl Gastroenterol Hepatol. 2017;2:114.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chalasani NP, Hayashi PH, Bonkovsky HL, Navarro VJ, Lee WM, Fontana RJ, Practice Parameters Committee of the American College of Gastroenterology. ACG Clinical Guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. Am J Gastroenterol. 2014;109(7):950–66.

    Article  PubMed  Google Scholar 

  66. Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research, Food and Drug Administration. Guidance for industry. Drug-induced liver injury: premarketing clinical evaluation. Drug Saf. 2009. http://www.fda.gov/downloads/drugs/guidancescomplianceregulatoryinformation.guidances/ucm174090.pdf. Accessed 7 Feb 2018

  67. Teschke R, Danan G. Drug induced liver injury with analysis of alternative causes as confounding variables. Br J Clin Pharmacol. 2018;84(7):1467–77.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Malnick S, Maor Y, Melzer E, Ziv-Sokolowskaia NN, Nueman MG. Severe hepatotoxicity linked to Denosumab. Eur Rev Med Pharmacol Sci. 2017;21(1 Suppl):78–85.

    CAS  PubMed  Google Scholar 

  69. Namn Y, Scneider Y, Cui I, Jesudian A. Diphenhydramine as a cause of drug-induced liver injury. Case Reports Hepatol. 2017;2017:3864236.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Niijima K, Niijimia Y, Okada S. Drug-induced liver injury cause by ipragliflozin administration with causality established by a positive lymphocyte transformation test (LTT) and the RUCAM: a case report. Ann Hepatol. 2017;16(2):308–11.

    Article  CAS  PubMed  Google Scholar 

  71. Ito D, Shimizu S, Inoue K, Saito D, Yanagisawa M, Inukai K, et al. Comparison of ipragliflozin and pioglitazone effects on nonalcoholic fatty liver disease in patients with type 2 diabetes: a randomized, 24-week, open-label, active-controlled trial. Diabetes Care. 2017;40(10):1364–72.

    Article  CAS  PubMed  Google Scholar 

  72. Patel S, Mendler MH, Valasek MA, Tsunoda SM. Drug-induced liver injury associated with the use of everolimus in a liver transplant patient. Case Rep Transpl. 2018;2018:7410508.

    Google Scholar 

  73. Park DH, Yun GY, Eun HS, Joo JS, Kim JS, Kang SH, et al. Fimasartan-induced liver injury in a patient with no adverse reactions on other types of angiotensin II receptor blockers: a case report. Medicine (Baltimore). 2017;96(47):e8905.

    Article  Google Scholar 

  74. FDA Drug Safety Communication: FDA warns about serious liver injury with Ocaliva (obeticholic acid) for rare chronic liver disease [Internet]. (2018). U.S. Food and Drug Administration. https://www.fda.gov/Drugs/DrugSafety/ucm576656.htm. Cited 12 Sept 2018.

  75. Aschenbrenner DS. Excessive dosing of obeticholic acid may increase risk of liver damage. Am J Nurs. 2018;118(2):46.

    PubMed  Google Scholar 

  76. Lugoboni F, Mirijello A, Morbioli L, Arzenton E, Leone R, Faccini M, et al. Does high-dose benzodiazepine abuse really produce liver toxicity? Results from a series of 201 benzodiazepine mono-abusers. Expert Opin Drug Saf. 2018;17(5):451–6.

    Article  CAS  PubMed  Google Scholar 

  77. Honda S, Sawada K, Hasebe T, Nakajima S, Fujiya M, Okumura T. Tegafur-uracil-induced rapid development of advanced hepatic fibrosis. World J Gastroenterol. 2017;23(31):5823–8.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Edwards B, Raisch D, Saraykar S, Sun M, Hammel J, Tran H, et al. Hepatotoxicity with vismodegib: an MD Anderson cancer center and research on adverse drug events and reports project. Drugs RD. 2017;17(1):211–8.

    Article  CAS  Google Scholar 

  79. Sakumura M, Tajiri K, Miwa S, Nagata K, Kawai K, Miyazono T, et al. Hepatic sinusoidal obstruction syndrome induced by non-transplant chemotherapy for non-Hodgkin lymphoma. Intern Med. 2017;56(4):395–400.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Shah JM, Lin K, Etienne D, Reddy M, Liu Y. Imatinib-induced hepatitis in a patient treated for gastrointestinal stromal tumor: a rare adverse effect. Cureus. 2018;10(4):e2529.

    PubMed  PubMed Central  Google Scholar 

  81. McDonald GB, Freston JW, Boyer JL, DeLeve LD. Liver complications following treatment of hematologic malignancy with anti-cd22-calicheamicin (inotuzumab ozogamicin). Hepatology. 2018;1:1. https://doi.org/10.1002/hep.30222.

    Article  CAS  Google Scholar 

  82. Tanaka R, Fujisawa Y, Sae I, Maruyama H, Ito S, Hasegawa N, et al. Severe hepatitis arising from ipilimumab administration, following melanoma treatment with nivolumab. Jpn J Clin Oncol. 2017;47(2):175–8.

    Article  PubMed  Google Scholar 

  83. Eigentler TK, Hassel JC, Verking C, Aberle J, Bachmann O, Grunwald V, et al. Diagnosis, monitoring and management of immune-related adverse drug reactions of anti-PD-1 antibody therapy. Cancer Treat Rev. 2016;45:7–18.

    Article  CAS  PubMed  Google Scholar 

  84. Gelsomino F, Vitale G, D’Errico A, Bertuzzi C, Andreone P, Ardizzoni A. Nivolumab-induced cholangitic liver disease: a novel form of serious liver injury. Ann Oncol. 2017;28(3):671–2.

    CAS  PubMed  Google Scholar 

  85. Matsubara T, Nishida T, Higaki Y, Tomita R, Shimakoshi H, Shimoda A, Osugi N, Sugimoto A, Takahashi K, Nakamatsu D, Mukai K, Yamamoto M, Fukui K, Adachi S, Inada M. Nivolumab induces sustained liver injury in a patient with malignant melanoma. Intern Med. 2018;57(12):1789–92.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Abdel-Rahman O, ElHalawani H, Fouad M. Risk of elevated transaminases in cancer patients treated with immune checkpoint inhibitors: a meta-analysis. Expert Opin Drug Saf. 2015;14:1507–18.

    Article  CAS  PubMed  Google Scholar 

  87. Zarrabi K, Wu S. Risk of liver toxicity with nivolumab immunotherapy in cancer patients. Oncology. 2018;94:259–73.

    Article  CAS  PubMed  Google Scholar 

  88. Zen Y, Yeh MM. Hepatotoxicity of immune checkpoint inhibitors: a histology study of seven cases in comparison with autoimmune hepatitis and idiosyncratic drug-induced liver injury. Mod Pathol. 2018;31:965–73.

    Article  PubMed  Google Scholar 

  89. Vigano L, De Rosa G, Toso C, Andres A, Ferrero A, Roth A, et al. Reversibility of chemotherapy-related liver injury. J Hepatol. 2017;67(1):84–91.

    Article  CAS  PubMed  Google Scholar 

  90. Wakiya T, Kudo D, Ishido K, Kimura N, Yakoshi Y, Toyoki Y, et al. Effect of age on the development of chemotherapy-associated liver injury in colorectal cancer liver metastasis. Mol Clin Oncol. 2017;7(2):200–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhanel GG, Hartel E, Adam H, Zelenitsky S, Zhanel MA, Golden A, et al. Solithromycin: a novel fluoroketolide for the treatment of community-acquired bacterial pneumonia. Drugs. 2016;76(18):1737–57.

    Article  CAS  PubMed  Google Scholar 

  92. Donald BJ, Surani S, Deol HS, Mbadugha UJ, Udeani G. Spotlight on solithromycin in the treatment of community-acquired bacterial pneumonia: design, development, and potential place in therapy. Drug Des Dev Ther. 2017;11:3559–66.

    Article  CAS  Google Scholar 

  93. Meeting of the Antimicrobial Drugs Advisory Committee (AMDAC) [Internet]. FDA Briefing Document Solithromycin Oral Capsule and Injection; (2016). http://www.fda.gov. Cited 25 Sep 2018.

  94. Dobbins R, Gholam P, Ertel S, Furey N, Baskaran GM, Goodman Z, Oldach D, Fernandes P. SAT-299—solithromycin treatment for 13 weeks improves histological parameters in nonalcoholic steatohepatitis: results of an ongoing pilot study. J. Hepatol. 2017;66(1):S586.

    Article  Google Scholar 

  95. Wong A, Sivilotti M, Graudins A. Accuracy of the paracetamol-aminotransferase multiplication product to predict hepatotoxicity in modified-release paracetamol overdose. Clin Toxicol (Phila). 2017;55(5):346–51.

    Article  CAS  Google Scholar 

  96. Sivilotti MLA, Green TJ, Langmann C, Yarema M, Juurlink D, Johnson D. Multiplying the serum aminotransferase by the acetaminophen concentration to predict toxicity following overdose. Clin Toxicol. 2010;48:793–9.

    Article  CAS  Google Scholar 

  97. Chomchai S, Chomchai C. Predicting acute acetaminophen hepatotoxicity with acetaminophen-aminotransferase multiplication product and the Psi parameter. Clin Toxicol. 2014;52:506–11.

    Article  CAS  Google Scholar 

  98. Heard K, Anderson V, Dart R. Serum acetaminophen protein adduct concentrations in pediatric emergency department patients. Hepatology. 2017;64(4):533–5.

    CAS  Google Scholar 

  99. Heard K, Anderson V, Lavonas E. Serum paracetamol-protein adducts in ambulatory subjects: relationship to recent reported paracetamol use. Biomarkers. 2018;23(3):288–92.

    Article  CAS  PubMed  Google Scholar 

  100. Heruth DP, Shortt K, Zhang N, Li DY, Zhang LQ, Ye SQ. Genetic association of single nucleotide polymorphisms with acetaminophen-induced hepatotoxicity. J Pharmacol Exp Ther. 2018. https://doi.org/10.1124/jpet.118.248583.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Roberts D, Lee W, Hinson J, Bai S, Swearingen CJ, Stravitz RT, et al. An immunoassay to rapidly measure acetaminophen protein adducts accurately identifies patients with acute liver injury or failure. Clin Gastroenterol Hepatol. 2017;15(4):555–62.

    Article  CAS  PubMed  Google Scholar 

  102. Dob S, Potschka H, Dob F, Mitzner S, Sauer M. Hepatotoxicity of antimycotics used for invasive fungal infections: in vitro results. Biomed Res Int. 2017;2017:9658018.

    Google Scholar 

  103. Pettit NN, Miceli MH, Rivera CG, Naraynanan PP, Perissinotti AJ, Hsu M, et al. Multicentre study of posaconazole delayed-release tablet serum level and association with hepatotoxicity and QTc prolongation. J Antimicrob Chemother. 2017;72(8):2355–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gayam V, Khalid M, Dahal S, Garlapati P, Gill A. Hyperacute liver injury following intravenous fluconazole: a rare case of dose-independent hepatotoxicity. J Family Med Prim Care. 2018;7(2):451–4.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Watkins PB, Lewis JH, Kaplowitz N, Alpers DH, Blais JD, Smotzer DM, et al. Clinical pattern of tolvaptan-associated liver in- jury in subjects with autosomal dominant polycystic kidney disease: analysis of clinical trials database. Drug Saf. 2015;38:1103–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Oi A, Morishita K, Awogi T, Ozaki A, Umezato M, Fujita S, et al. Nonclinical safety profile of tolvaptan. Cardiovasc Drugs Ther. 2011;1:S91–9.

    Article  CAS  Google Scholar 

  107. Mosedale M, Kim Y, Brock W, Roth SE, Wiltshire T, Eaddy JS, et al. Editor’s highlight: candidate risk factors and mechanisms for tolvaptan-induced liver injury are identified using a collaborative cross approach. Toxicol Sci. 2017;156(2):438–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Festing MFW. Inbred strains should replace outbred stocks in toxicology, safety testing, and drug development. Toxicol Pathol. 2010;38(5):681–90.

    Article  CAS  PubMed  Google Scholar 

  109. Harrill AH, DeSmet KD, Wolf KK, Bridges AS, Eaddy JS, Kurtz CL, et al. A mouse diversity panel approach reveals the potential for clinical kidney injury due to DB289 not predicted by classical rodent models. Toxicol Sci. 2012;130(2):416–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mosedale M, Eaddy JS, Trask OJ, Holman NS, Wolf KK, LeCluyse E, et al. miR-122 release in exosomes precedes overt tolvaptan-induced necrosis in a primary human hepatocyte micropatterned coculture model. Toxicol Sci. 2018;161(1):149–58.

    Article  CAS  PubMed  Google Scholar 

  111. Woodhead JF, Watkins PB, Howell BA, Siler SQ, Shoda LK. The role of quantitative systems pharmacology modeling in the prediction and explanation of idiosyncratic drug-induced liver injury. Drug Metab Pharmacokinet. 2017;32(1):40–5.

    Article  CAS  PubMed  Google Scholar 

  112. Woodhead JF, Brock WJ, Roth SE, Shoaf SE, Brouwer KL, Church R, et al. Application of a mechanistic model to evaluate putative mechanisms of tolvaptan drug-induced liver injury and identify patient susceptibility factors. Toxicol Sci. 2017;155(1):61–74.

    Article  CAS  PubMed  Google Scholar 

  113. Barnhill M, Real M, Lewis J. Latest advances in diagnosing and predicting DILI: what was new in 2017. Expert Rev Gastroenterol Hepatol. 2018. https://doi.org/10.1080/17474124.2018.1512854.

    Article  PubMed  Google Scholar 

  114. Suzuki A, Andrade RJ, Bjornsson E, Lucena MI, Lee WM, Yuen NA, et al. Drugs associated with hepatotoxicity and their reporting frequency of liver adverse events in VigiBase: unified list based on international collaborative work. Drug Saf. 2010;33:503–22.

    Article  CAS  PubMed  Google Scholar 

  115. Bjornsson ES, Hoofnagle JH. Categorization of drugs implicated in causing liver injury: critical assessment based on published case reports. Hepatology. 2016;63:590–603.

    Article  PubMed  Google Scholar 

  116. Shirai Y, Oda S, Makino S. Establishment of a mouse model of enalapril-induced liver injury and investigation of the pathogenesis. Lab Investig. 2017;97(7):833–42.

    Article  CAS  PubMed  Google Scholar 

  117. Liakoni E, Ratz Bravo AE, Krahenbuhl S. Hepatotoxicity of new oral anticoagulants (NOACs). Drug Saf. 2015;38:711–20.

    Article  CAS  PubMed  Google Scholar 

  118. Glenn K, Chen P, Musleh M. A rare case of rivaroxaban causing delayed symptomatic hepatocellular injury and hyperbilirubinemia. Case Rep Gastrointest Med. 2017;2017:5678187.

    PubMed  PubMed Central  Google Scholar 

  119. Alonso A, MacLehose R, Chen L, Bengtson L, Chanberlain A, Norby F, et al. Prospective study of oral anticoagulants and risk of liver injury in atrial fibrillation patients. Heart. 2017;103(11):834–939.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Douros A, Azoulay L, Yin H, Suissa S, Renoux C. Non-vitamin K antagonist oral anticoagulants and risk of serious liver injury. JACC. 2018;71(10):1105–13.

    Article  CAS  PubMed  Google Scholar 

  121. Heidbuchel H, Verhamme P, Alings M, Antz M, Diener HC, Hacke W, et al. Updated European Heart Rhythm Association practical guide on the use of non-vitamin K antagonist anticoagulants in patients with nonvalvular atrial fibrillation. Europace. 2015;17:1467–507.

    Article  PubMed  Google Scholar 

  122. Sarges P, Steinberg JM, Lewis JH. Drug-induced liver injury: highlights from a review of the 2015 literature. Drug Saf. 2016;2016:1–21.

    Google Scholar 

  123. Mishra P, Chen M. Direct-Acting antivirals for chronic hepatitis C: can drug properties signal potential for liver injury? Gastroenterol. 2017;152(6):1270–4.

    Article  Google Scholar 

  124. Chen M, Borlak J, Tong W. High lipophilicity and high daily dose of oral medications are associated with significant risk for drug induced liver injury. Hepatology. 2013;58:388–96.

    Article  CAS  PubMed  Google Scholar 

  125. Segamwenge IL, Bernard MK. Acute liver failure among patients on efavirenz-based antiretroviral therapy. Case Rep Hepatol. 2018. https://doi.org/10.1155/2018/1270716.

    Article  Google Scholar 

  126. Diab OA, Kamel J, Abd-Elhamid AA. Predictors of intravenous amiodarone induced liver injury. Egypt Heart J. 2017;69(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  127. Grimaldi-Bensouda L, Matthias A, et al. Dronedarone, amiodarone and other antiarrhythmic drugs, and acute liver injuries: a case-referent study. Int J Cardiol. 2018;266:100–5.

    Article  PubMed  Google Scholar 

  128. Suvichapanich S, Fukunaga K, Zahroh H, Mushiroda T, Mahasirimongkol S, Toyo-oka L, et al. NAT2: ultra-slow acetylator and risk of anti-tuberculosis drug-induced liver injury: a genotype-based meta-analysis. Pharmacogenet Genom. 2018;28(7):167–76.

    CAS  Google Scholar 

  129. Zhang M, Wang S, Wilffert B, Tong R, van Soolingen D, van den Hof S, Alffenaar JW. The association between the NAT2 genetic polymorphisms and risk of DILI during anti-TB treatment: a systematic review and meta-analysis. Br J Clin Pharmacol. 2018. https://doi.org/10.1111/bcp.13722.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Nociti V, Biolato M, De Fino C, Bianco A, Losavio FA, Lucchini M, et al. Liver injury after pulsed methylprednisolone therapy in multiple sclerosis patients. Brain Behav. 2018;8(6):e00968. https://doi.org/10.1002/brb3.968.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Bresteau C, Prevot S, Perlemuter G, Voican C. Methylprednisolone-induced acute liver injury in a patient treated for multiple sclerosis relapse. BMJ Case Rep. 2018. https://doi.org/10.1136/bcr-2017-223670.

    Article  PubMed  Google Scholar 

  132. Dumortier J, Cottin J, Lavie C. Methylprednisolone liver toxicity: A new case and a French regional pharmacovigilance survey. Clin Res Hepatol Gastroenterol. 2017;41(4):497–501.

    Article  CAS  PubMed  Google Scholar 

  133. Billioti de Gage S, Collin C, Le-Tri T, Pariente A, Bégaud B, Verdoux H, Dray-Spira R, Zureik M. Antidepressants and hepatotoxicity: a cohort study among 5 million individuals registered in the French National Health Insurance Database. CNS Drugs. 2018;32(7):673–84.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Ferrajolo C, Scavone C, Donati M, Bortolami O, Stoppa G, Motola D, DILI-IT Study Group, et al. Antidepressant-induced acute liver injury: a case–control study in an Italian Inpatient Population. Drug Saf. 2017;41(1):95–102.

    Article  Google Scholar 

  135. Kok B, Lester EL, Lee WM, Hanje AJ, Stravitz RT, Girgis S, United States Acute Liver Failure Study Group, et al. Acute liver failure from tumor necrosis factor-α antagonists: report of four cases and literature review. Dig Dis Sci. 2018;63(6):1654–66.

    Article  CAS  PubMed  Google Scholar 

  136. Barnhill M, Lewis JH. Are authors following the rules for causality assessment? Gastroenterology. 2018;154(6):S-1227 (abstract #2910244).

    Article  Google Scholar 

  137. Wong MC, Huang JL, George J, Huang J, Leung C, Eslam M, et al. The changing epidemiology of liver diseases in the Asia-Pacific region. Nat Rev Gastroenterol Hepatol. 2018. https://doi.org/10.1038/s41575-018-0055.0.

    Article  PubMed  Google Scholar 

  138. Wang R, Qi X, Yoshida EM, Mendez-Sanchez N, Teschke R, Sun M, et al. Clinical characteristics and outcomes of traditional Chinese medicine-induced liver injury: a systematic review. Expert Rev Gastroenterol Hepatol. 2018;12(4):425–34.

    Article  CAS  PubMed  Google Scholar 

  139. Liu Z, He X, Wang L, Zhang Y, Hai Y, Gao R. Chinese herbal medicine hepatotoxicity: the evaluation and recognization based on large-scale evidence database. Curr Drug Metab. 2018. https://doi.org/10.2174/1389200219666180813144114.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wang JB, Zhu Y, Bai ZF, Wang FS, Li XH, Xiao XH, et al. Guidelines for the diagnosis and management of herb-induced liver injury. Chin J Integr Med. 2018;24(9):696–706.

    Article  CAS  PubMed  Google Scholar 

  141. Jing J, Teschke R. Traditional Chinese medicine and herb-induced liver injury: comparison with drug-induced liver injury. J Clin Transl Hepatol. 2018;6(1):57–68.

    PubMed  Google Scholar 

  142. Danan G, Teschke R. Review: RUCAM in drug and herb induced liver injury: the update. Int J Mol Sci. 2016;17(14):1–33.

    Google Scholar 

  143. Agarwal VK, McHutchinson JG, Hoofnagle JH. Important elements for the diagnosis of drug-induced liver injury. Clin Gastroenterol Hepatol. 2010;8(5):463–70.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ganger DR, Rule J, Rakela J, Bass N, Reuben A, Stravitz RT, et al. Acute liver failure of indeterminate etiology: a comprehensive systematic approach by an expert committee to establish causality. Am J Gastroenterol. 2018. https://doi.org/10.1038/s41395-018-0160-2.

    Article  PubMed  Google Scholar 

  145. Scalfaro E, Streefkerk H, Merz M, Meier C, Lewis D. Preliminary results of a novel algorithmic method aiming to support initial causality assessment of routine pharmacovigilance case reports for medication-induced liver injury: the PV-RUCAM. Drug Saf. 2017;40(8):715–27.

    Article  CAS  PubMed  Google Scholar 

  146. Lauschke V. Dysregulation of miR-223 constitutes a promising biomarker that informs about clinical outcomes of acute liver failure. Clin Sci (Lond). 2017;131(15):2059–62.

    Article  CAS  Google Scholar 

  147. Fang C, Li XP, Gong WJ, Wu NY, Tang J, Yin JY, et al. Age-related common miRNA polymorphism associated with severe toxicity in lung cancer patients treated with platinum-based chemotherapy. Clin Exp Pharmacol Physiol. 2017;44(Suppl 1):21–9.

    Article  CAS  PubMed  Google Scholar 

  148. Yang R, Yang F, Huang Z, Jin Y, Sheng Y, Ji L. Serum microRNA-122-3p, microRNA-194-5p and microRNA-5099 are potential toxicological biomarkers for the hepatotoxicity induced by Airpotato yam. Toxicol Lett. 2017;280:125–32.

    Article  CAS  PubMed  Google Scholar 

  149. Rissin D, Lopez-Longarela B, Pernagallo S. Poymerase-free measurement of microRNA-122 with single base specificity using single molecule arrays: detection of drug-induced liver injury. PLoS One. 2017;12(7):e0179669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vliegenthart A, Berends C, Potter C, Kersaudy-Kerhoas M, Dear JW. microRNA-122 can be measured in capillary blood which facilitates point-of-care testing for drug-induced liver injury. Br J Clin Pharmacol. 2017;83(9):2027–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lee J, Ji SC, Kim B, Yi S, Shin KH, Cho JY, et al. Exploration of biomarkers for amoxicillin/clavulanate-induced liver injury: multi-omics approaches. Clin Transl Sci. 2017;10(3):163–71.

    Article  CAS  PubMed  Google Scholar 

  152. Cho T, Uetrecht J. How reactive metabolites induce an immune response that sometimes leads to an idiosyncratic drug reaction. Chem Res Toxicol. 2017;30(1):295–314.

    Article  CAS  PubMed  Google Scholar 

  153. Dakhoul L, Ghabril M, Chalasani N. Drug-induced chronic liver injury. J Hepatol. 2018;69(1):248–50.

    Article  PubMed  Google Scholar 

  154. Stieger B, Mahdi Z. Review: model systems for studying the role of canalicular efflux transporters in drug-induced cholestatic liver disease. J Pharm Sci. 2017;106(9):2295–301.

    Article  CAS  PubMed  Google Scholar 

  155. Ali I, Welch M, Lu Y, Swaan PW, Brouwer KL. Identification of novel MRP3 inhibitors based on computational models and validation using an in vitro membrane vesicle assay. Eur J Pharm Sci. 2017;103:52–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ogese M, Faulkner L, Jenkins R, French NS, Copple IM, Antoine DJ, et al. Characterization of drug-specific signaling between primary human hepatocytes and immune cells. Toxicol Sci. 2017;158(1):76–89.

    Article  CAS  PubMed  Google Scholar 

  157. Goda K, Kobayashi A, Takahashi A. Evaluation of the potential risk of drugs to induce hepatotoxicity in human-relationships between hepatic steatosis observed in non-clinical toxicity study and hepatotoxicity in humans. Int J Mol Sci. 2017;18(4):810.

    Article  CAS  PubMed Central  Google Scholar 

  158. McEuen K, Borlak J, Tong W, Chen M. Associations of drug lipophilicity and extent of metabolism with drug-induced liver injury. Int J Mol Sci. 2017;18(7):1335.

    Article  CAS  PubMed Central  Google Scholar 

  159. Bilgic Y, Yilmaz C, Cagin YF, Atayan Y, Karadag N, Harputluoglu MM. Albendazole induced recurrent acute toxic hepatitis: a case report. Acta Gastroenterol Belg. 2017;80(2):309–11.

    PubMed  Google Scholar 

  160. Bergland Ellingsen S, Nordmo E, Tore Lappegard K. Recurrence and severe worsening of hepatotoxicity after reintroduction of atorvastatin in combination with ezetimibe. Clin Med Insights Case Rep. 2017;10:1179547617731375.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Mukthinuthalapati PK, Fontana RJ, Vuppalanchi R, Chalasani N, Ghabril M. Celecoxib-induced liver injury: analysis of published case reports and cases reported to the Food and Drug Administration. J Clin Gastroenterol. 2017;52(2):114–22.

    Google Scholar 

  162. Muñoz MA, Kulick CG, Kortepeter CM, Levin RL, Avigan MI. Liver injury associated with dimethyl fumarate in multiple sclerosis patients. Mult Scler. 2017;23(14):1947–9.

    Article  PubMed  Google Scholar 

  163. Lévesque AM, Yang CD, Elchebly C, Doré M. Hepatotoxicity associated with iopamidol. Am J Health Syst Pharm. 2017;74(10):636–40.

    Article  PubMed  Google Scholar 

  164. Ahmad J, Odin JA, Hayashi PH, Chalasani N, Fontana R, Barnhart H, et al. Identification and characterization of fenofibrate-induced liver injury. Dig Dis Sci. 2017;62(12):3596–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Almeida J, Sola-Valls N, Pose E. Liver injury and glatiramer acetate, an uncommon association: case report and literature review. Ther Adv Neurol Disord. 2017;10(11):367–72.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Sako A, Bae S, Gushima T, Motoshita J, Bekki S, Abiru S, et al. Drug-induced liver injury associated with mosapride citrate: a report of two cases. Int Med. 2017;56:41–5.

    Article  Google Scholar 

  167. Choudhary N, Bodh V, Chaudhari S. Norethisterone related drug induced liver injury: a series of 3 cases. J Clin Exp Hepatol. 2017;7(3):266–8.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Verma N, Kumar P, Mitra S, Taneja S, Dhooria S, Das A, et al. Drug idiosyncrasy due to pirfenidone presenting as acute liver failure: case report and mini-review of the literature. Hepatol Commun. 2017;2(2):142–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Lewis.

Ethics declarations

Ethical approval

There was no need for ethical approval.

Conflict of interest

Mark Real, Michele Barnhill, Cory Higley and Jessica Rosenberg have no conflicts of interest that are directly relevant to the content of this study. James Lewis has received fees for participation in review activities such as data monitoring boards, etc., for Otsuka, Allergan, GSK, Zydus, Shire, BMS but otherwise has no other conflicts of interest.

Funding

No sources of funding were used to assist in the preparation of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Real, M., Barnhill, M.S., Higley, C. et al. Drug-Induced Liver Injury: Highlights of the Recent Literature. Drug Saf 42, 365–387 (2019). https://doi.org/10.1007/s40264-018-0743-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-018-0743-2

Navigation