Skip to main content
Log in

Evidence of Misclassification of Drug–Event Associations Classified as Gold Standard ‘Negative Controls’ by the Observational Medical Outcomes Partnership (OMOP)

  • Original Research Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Introduction

Pharmacovigilance includes analysis of large databases of information on drugs and events using algorithms that detect disproportional frequencies of associations. In order to test such algorithms, attempts have been made to provide canonical reference lists of so-called ‘positive controls’ and ‘negative controls’. Reference sets with even modest levels of misclassification may result in under- or overstatement of the performance of algorithms.

Aim

We sought to determine the extent to which ‘negative control’ drug–event pairs in the Observational Medical Outcomes Partnership (OMOP) database are misclassified

Methods

We searched the medical literature for evidence of associations between drugs and events listed by OMOP as negative controls.

Results

The criteria used in OMOP to classify positive and negative controls are asymmetric; drug–event associations published only as case series or case reports are classified as positive controls if they are cited in Drug-Induced Diseases by Tisdale and Miller, but as negative controls if case series or case reports exist but are not cited in Tisdale and Miller. Of 233 drug–event pairs classified in the 2013 version of OMOP as negative controls, 21 failed to meet pre-specified OMOP adjudication criteria; in another 19 cases we found case reports, case series, or observational evidence that the drug and event are associated. Overall, OMOP misclassified, or may have misclassified, 40 (17 %) of all ‘negative controls.’

Conclusions

Results from studies of the performance of signal-detection algorithms based on the OMOP gold standard should be viewed with circumspection, because imperfect gold standards may lead to under/overstatement of absolute and relative signal detection algorithm performance. Improvements to OMOP would include omitting misclassified drug–event pairs, assigning more specific event labels, and using more extensive sources of information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hauben M, Norén GN. A decade of data mining and still counting. Drug Saf. 2010;33(7):527–34.

    Article  PubMed  Google Scholar 

  2. Observational Medical Outcomes Partnership (OMOP). http://fnih.org/what-we-do/major-completed-programs/omop. Accessed 21 Jan 2016.

  3. Observational Medical Outcomes Partnership. http://omop.org. Accessed 21 Jan 2016.

  4. Cardoso JR, Pereira LM, Iversen MD, Ramos AL. What is gold standard and what is ground truth? Dental Press J Orthod. 2014;19(5):27–30.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ryan PB, Madigan D, Stang PE, Overhage JM, Racoosin JA, Hartzema AG. Empirical assessment of methods for risk identification in healthcare data: results from experiments of the Observational Medical Outcomes Partnership. Stat Med. 2012;31(30):4401–15.

    Article  PubMed  Google Scholar 

  6. Ryan PB, Schuemie MJ, Welebob E, Duke J, Valentine S, Hartzema AG. Defining a reference set to support methodological research in drug safety. Drug Saf. 2013;36(Suppl 1):S33–47.

    Article  PubMed  Google Scholar 

  7. Harpaz R, DuMouchel W, LePendu P, Shah NH. Empirical Bayes model to combine signals of adverse drug reactions. Proceedings of the 2013 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’13); 2013. p. 1339–47.

  8. Harpaz R, DuMouchel W, LePendu P, Bauer-Mehren A, Ryan P, Shah NH. Performance of pharmacovigilance signal-detection algorithms for the FDA adverse event reporting system. Clin Pharmacol Ther. 2013;93(6):539–46.

    Article  CAS  PubMed  Google Scholar 

  9. White RW, Harpaz R, Shah NH, DuMouchel W, Horvitz E. Toward enhanced pharmacovigilance using patient-generated data on the internet. Clin Pharmacol Ther. 2014;96(2):239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harpaz R, DuMouchel W, Shah NH. Comment on: “Zoo or Savannah? Choice of training ground for evidence-based pharmacovigilance”. Drug Saf. 2015;38(1):113–4.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Norén GN, Castor O, Juhlin K, Lindquist M. Authors’ reply to Harpaz et al. comment on: “Zoo or Savannah? Choice of training ground for evidence-based pharmacovigilance”. Drug Saf. 2005;38(1):115–6.

    Article  Google Scholar 

  12. Li Y, Ryan PB, Wei Y, Friedman C. A method to combine signals from spontaneous reporting systems and observational healthcare data to detect adverse drug reactions. Drug Saf. 2015;38(10):895–908.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hauben M, Reich L, et al. Response to letter by Levine. Br J Clin Pharmacol. 2006;61(1):115–7.

    Article  CAS  PubMed Central  Google Scholar 

  14. Phelps CE, Hutson A. Estimating diagnostic accuracy using a “fuzzy gold standard”. Med Decis Making. 1995;15:44–57.

    Article  CAS  PubMed  Google Scholar 

  15. Tisdale JE, Miller DA. Drug-induced diseases: prevention, detection, and management. 2nd ed. Bethesda: American Society of Health-System Pharmacists; 2010.

    Google Scholar 

  16. European Medicines Agency. Guideline on good pharmacovigilance practices (GVP) Annex I—definitions (Rev 3). http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2013/05/WC500143294.pdf. Accessed 21 Jan 2016.

  17. Girard M. Conclusiveness of rechallenge in the interpretation of adverse drug reactions. Br J Clin Pharmacol. 1987;23(1):73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aronson JK, Hauben M. Anecdotes that provide definitive evidence. BMJ. 2006;333(7581):1267–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hauben M, Aronson JK. Gold standards in pharmacovigilance: the use of definitive anecdotal reports of adverse drug reactions as pure gold and high-grade ore. Drug Saf. 2007;30(8):645–55.

    Article  PubMed  Google Scholar 

  20. Valenstein PN. Evaluating diagnostic tests with imperfect standards. Am J Clin Pathol. 1990;93(2):252–8.

    Article  CAS  PubMed  Google Scholar 

  21. Council for International Organizations of Medical Sciences. Practical aspects of signal detection in pharmacovigilance: report of CIOMS Working Group VIII. http://www.cioms.ch/index.php/publications/available-publications?task=view&id=27&catid=54. Accessed 21 Jan 2016.

  22. Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One. 2015;10(3):e0118432.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hawkins DM, Garrett JA, Stephenson B. Some issues in resolution of diagnostic tests using an imperfect gold standard. Stat Med. 2001;20(13):1987–2001.

    Article  CAS  PubMed  Google Scholar 

  24. EP550. Verification bias and tarnished gold standards. February 2, 2012. http://www.uphs.upenn.edu/dgimhsr/documents/Lecture.verificationbias.handout.pdf. Accessed 21 Jan 2016.

  25. Overhage JM, Ryan PB, Schuemie MJ, Stang PE. Authors’ reply to Hennessy and Leonard’s comment on “Desideratum for evidence-based epidemiology”. Drug Saf. 2015;38(1):105–7.

    Article  PubMed  Google Scholar 

  26. Hennessy S, Leonard CE. Comment on: “Desideratum for evidence-based epidemiology”. Drug Saf. 2015;38(1):101–3.

    Article  PubMed  Google Scholar 

  27. Patanè S, Marte F, Di Bella G, Chiofalo S, Currò A, Coglitore S. Acute myocardial infarction and Kounis syndrome. Int J Cardiol. 2009;134(2):e45–6.

    Article  PubMed  Google Scholar 

  28. Caglar IM, Vural A, Turhan Caglar FN, Ugurlucan M, Karakaya O. Kounis syndrome together with myocardial bridging leading to acute myocardial infarction at young age. Case Rep Med. 2011;2011:490310.

  29. Jackson CW, Sheehan AH, Reddan JG. Evidence-based review of the black-box warning for droperidol. Am J Health Syst Pharm. 2007;64(11):1174–86.

    Article  CAS  PubMed  Google Scholar 

  30. Mittleman MA, Lewis RA, Maclure M, Sherwood JB, Muller JE. Triggering myocardial infarction by marijuana. Circulation. 2001;103(23):2805–9.

    Article  CAS  PubMed  Google Scholar 

  31. Patel A, Jones SA, Ferro A, Patel N. Pharmaceutical salts: a formulation trick or a clinical conundrum? Br J Cardiol. 2009;16(6):281–6.

    Google Scholar 

  32. Ferner RE, Coleman J, Pirmohamed M, Constable SA, Rouse A. The quality of information on monitoring for haematological adverse drug reactions. Br J Clin Pharmacol. 2005;60(4):448–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pfistermeister B, Saß A, Criegee-Rieck M, Bürkle T, Fromm MF, Maas R. Inconsistencies and misleading product information officially approved prescribing information from three major drug markets. Clin Pharmacol Ther. 2014;96(5):616–24.

    Article  CAS  PubMed  Google Scholar 

  34. Harpaz R, Odgers D, Gaskin G, DuMouchel W, Winnenburg R, Bodenreider O, Ripple A, Szarfman A, Sorbello A, Horvitz E, White RW, Shah NH. A time-indexed reference standard of adverse drug reactions. Sci Data. 2014;1:140043.

    Article  PubMed  PubMed Central  Google Scholar 

  35. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=073201aa-556d-4a70-918e-84e9616fd88d. Accessed 21 Jan 2016.

  36. Cohen A. Gastrointestinal blood loss induced by bromfenac sodium, aspirin, and placebo. Clin Ther. 1995;17(6):1110–7.

    Article  CAS  PubMed  Google Scholar 

  37. Worm SW, Sabin C, Weber R, Reiss P, El-Sadr W, Dabis F, De Wit S, Law M, Monforte AD, Friis-Møller N, Kirk O, Fontas E, Weller I, Phillips A, Lundgren J. Risk of myocardial infarction in patients with HIV infection exposed to specific individual antiretroviral drugs from the 3 major drug classes: the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study. J Infect Dis. 2010;201(3):318–30.

    Article  CAS  PubMed  Google Scholar 

  38. Durand M, Sheehy O, Baril JG, Lelorier J, Tremblay CL. Association between HIV infection, antiretroviral therapy, and risk of acute myocardial infarction: a cohort and nested case–control study using Québec’s public health insurance database. J Acquir Immune Defic Syndr. 2011;57(3):245–53.

    Article  PubMed  Google Scholar 

  39. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=92b37df9-4602-442f-b8ef-32744f5f412b. Accessed 21 Jan 2016.

  40. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=304fdee6-0290-4717-be3d-b367bec7e411. Accessed 21 Jan 2016.

  41. Orman ES, Conjeevaram HS, Vuppalanchi R, Freston JW, Rochon J, Kleiner DE, Hayashi PH; DILIN Research Group. Clinical and histopathologic features of fluoroquinolone-induced liver injury. Clin Gastroenterol Hepatol. 2011;9(6):517–523.e3.

  42. Coleman CI, Spencer JV, Chung JO, Reddy P. Possible gatifloxacin-induced fulminant hepatic failure. Ann Pharmacother. 2002;36(7–8):1162–7.

    Article  PubMed  Google Scholar 

  43. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=af318d5d-cc39-4a63-a590-b87c50f2694f. Accessed 21 Jan 2016.

  44. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=d18108f5-98ca-1220-d145-bcf4e71ceaee. Accessed 21 Jan 2016.

  45. Giallauria F, Paragliola T, Del Forno D, Baiano A, de Cristofaro A, Rossi M, Vigorito C. Riabilitazione Cardiologica in paziente HIV-positivo trattato con inibitori di proteasi. [Cardiac rehabilitation in a HIV-patient treated with protease inhibitors.]. Monaldi Arch Chest Dis. 2003;60(1):92–6.

    PubMed  Google Scholar 

  46. Flynn TE, Bricker LA. Myocardial infarction in HIV-infected men receiving protease inhibitors. Ann Intern Med. 1999;131(7):548.

    Article  CAS  PubMed  Google Scholar 

  47. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=5bbdc95b-82a1-4ba5-8185-6504ff68cc06. Accessed 21 Jan 2016.

  48. Roche Products Limited. Xenical 120 mg hard capsules. http://www.medicines.org.uk/emc/medicine/1746. Accessed 21 Jan 2016.

  49. Courtney AE, O’Rourke DM, Maxwell AP. Rapidly progressive renal failure associated with successful pharmacotherapy for obesity. Nephrol Dial Transplant. 2007;22(2):621–3.

    Article  CAS  PubMed  Google Scholar 

  50. Singh A, Sarkar SR, Gaber LW, Perazella MA. Acute oxalate nephropathy associated with orlistat, a gastrointestinal lipase inhibitor. Am J Kidney Dis. 2007;49(1):153–7.

    Article  CAS  PubMed  Google Scholar 

  51. Weir MA, Beyea MM, Gomes T, Juurlink DN, Mamdani M, Blake PG, Wald R, Garg AX. Orlistat and acute kidney injury: an analysis of 953 patients. Arch Intern Med. 2011;171(7):703–4.

    Article  PubMed  Google Scholar 

  52. Kunin CM. Nephrotoxicity of antibiotics. JAMA. 1967;202(3):204–8.

    Article  CAS  PubMed  Google Scholar 

  53. Ottervanger JP, Wilson JH, Stricker BH. Drug-induced chest pain and myocardial infarction. Reports to a national centre and review of the literature. Eur J Clin Pharmacol. 1997;53(2):105–10.

    Article  CAS  PubMed  Google Scholar 

  54. Kent Pharmaceuticals Ltd. Phenoxymethyl Penicillin 125 mg/5 ml Oral Solution Sugar Free BP. http://www.medicines.org.uk/emc/medicine/27479. Accessed 21 Jan 2016.

  55. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=12d9728e-6b5c-4aee-bfb0-745e542ed2e4. Accessed 21 Jan 2016.

  56. Zhang B, de Vries F, Setakis E, van Staa TP. The pattern of risk of myocardial infarction in patients taking asthma medication: a study with the General Practice Research Database. J Hypertens. 2009;27(7):1485–92.

    Article  CAS  PubMed  Google Scholar 

  57. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=f85a48d0-0407-4c50-b0fa-7673a160bf01. Accessed 21 Jan 2016.

  58. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=f55bcc41-2e8d-4ee5-9993-05c7d86f2d2c. Accessed 21 Jan 2016.

  59. Sidney S. Cardiovascular consequences of marijuana use. J Clin Pharmacol. 2002;42(11 Suppl):64S–70S.

    Article  CAS  PubMed  Google Scholar 

  60. Mach F, Montecucco F, Steffens S. Cannabinoid receptors in acute and chronic complications of atherosclerosis. Br J Pharmacol. 2008;153(2):290–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Charles R, Holt S, Kirkham N. Myocardial infarction and marijuana. Clin Toxicol. 1979;14(4):433–8.

    Article  CAS  PubMed  Google Scholar 

  62. Macinnes DC, Miller KM. Fatal coronary artery thrombosis associated with cannabis smoking. J R Coll Gen Pract. 1984;34(267):575–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Collins JS, Higginson JD, Boyle DM, Webb SW. Myocardial infarction during marijuana smoking in a young female. Eur Heart J. 1985;6(7):637–8.

    CAS  PubMed  Google Scholar 

  64. Choi YS, Pearl WR. Cardiovascular effects of adolescent drug abuse. J Adolesc Health Care. 1989;10(4):332–7.

    Article  CAS  PubMed  Google Scholar 

  65. Papp E, Czopf L, Habon T, Halmosi R, Horvath B, Marton Z, Tahin T, Komocsi A, Horvath I, Melegh B, Toth K. Drug-induced myocardial infarction in young patients: report of two cases. Int J Cardiol. 2005;98(1):169–70.

    Article  PubMed  Google Scholar 

  66. Leblanc A, Tirel-Badets A, Paleiron N, Castellant P, Cornily JC, Andre M, Grassin F, Feuvrier Y, Blanchard C, Zagnoli F, Quiniou G, Vinsonneau U. Cannabis et infarctus du myocarde du sujet jeune : association fortuite? A propos d’une observation. [Cannabis and myocardial infarction without angiographic stenosis in young patient: guilty or not guilty? A case report]. Ann Cardiol Angeiol (Paris). 2011;60(3):154–8.

  67. Tormey WP. Cannabis, possible cardiac deaths and the coroner in Ireland. Ir J Med Sci. 2012;181(4):479–82.

    Article  CAS  PubMed  Google Scholar 

  68. Tormey WP. Cannabis misinterpretation and misadventure in a coroner’s court. Med Sci Law. 2012;52(4):229–30.

    Article  PubMed  Google Scholar 

  69. Blank DW, Nanji AA, Schreiber DH, Hudman C, Sanders HD. Acute renal failure and seizures associated with chlorambucil overdose. J Toxicol Clin Toxicol. 1983;20(4):361–5.

    Article  CAS  PubMed  Google Scholar 

  70. Doan RJ, Callaghan WD. Clozapine treatment and neuroleptic malignant syndrome. Can J Psychiatry. 2000;45(4):394–5.

    CAS  PubMed  Google Scholar 

  71. Elias TJ, Bannister KM, Clarkson AR, Faull D, Faull RJ. Clozapine-induced acute interstitial nephritis. Lancet. 1999;354(9185):1180–1.

    Article  CAS  PubMed  Google Scholar 

  72. Fraser D, Jibani M. An unexpected and serious complication of treatment with the atypical antipsychotic drug clozapine. Clin Nephrol. 2000;54(1):78–80.

    CAS  PubMed  Google Scholar 

  73. Janssen-Cilag Ltd. Prezista 100 mg/ml oral suspension. http://www.medicines.org.uk/emc/medicine/28267. Accessed 21 Jan 2016.

  74. Fisher PE, Silk DB, Menzies-Gow N, Dingle M. Ergotamine abuse and extra-hepatic portal hypertension. Postgrad Med J. 1985;61(715):461–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Deviere J, Reuse C, Askenasi R. Ischemic pancreatitis and hepatitis secondary to ergotamine poisoning. J Clin Gastroenterol. 1987;9(3):350–2.

    Article  CAS  PubMed  Google Scholar 

  76. Fedotin MS, Hartman C. Ergotamine poisoning producing renal arterial spasm. N Engl J Med. 1970;283(10):518–20.

    Article  CAS  PubMed  Google Scholar 

  77. Pusey CD, Rainford DJ. St Anthony’s fire and pseudochronic renal failure. Br Med J. 1977;2(6092):935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hofstädter F. Ergotaminabusus als Ursache einer Retroperitonealfibrose [Ergotamine abuse and retroperitoneal fibrosis.] Zentralbl Allg Pathol. 1976;120(2):83–7.

  79. Lepage-Savary D, Vallières A. Ergotamine as a possible cause of retroperitoneal fibrosis. Clin Pharm. 1982;1(2):179–80.

    CAS  PubMed  Google Scholar 

  80. Janssen van Doorn K, Van der Niepen P, van Tussenbroeck F, Verbeelen D. Acute tubulo-interstitial nephritis and renal infarction secondary to ergotamine therapy. Nephrol Dial Transplant. 2000;15(11):1877–9.

    Article  CAS  PubMed  Google Scholar 

  81. Pujadas R, Argimón J, Pelegrí A, Jané J. Insuficiencia renal y ergotismo. [Renal insufficiency and ergotism.]. Med Clin (Barc). 1985;84(5):208–9.

    CAS  Google Scholar 

  82. Barquinero Máñez J, Tovar Méndez JL, Vallès Prats M, de Luis Sánchez A. Ergotamina e insuficiencia renal aguda. [Ergotamine and acute renal insufficiency.] Med Clin (Barc). 1987;88(2):80–1.

  83. Lund J. Prolonged renal impairment after chronic ergotamine intoxication. Nephrol Dial Transplant. 1992;7(8):879–80.

    CAS  PubMed  Google Scholar 

  84. Luongo MA, Bjornson SS. Liver in ferrous sulfate poisoning—a report of three fatal cases in children and an experimental study. New Engl J Med. 1954;251(25):995–9.

    Article  CAS  PubMed  Google Scholar 

  85. Brown RJ, Gray JD. The mechanism of acute ferrous sulphate poisoning. Can Med Assoc J. 1955;73(3):192–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Tenenbein M. Toxicokinetics and toxicodynamics of iron poisoning. Toxicol Lett. 1998;102–103:653–6.

    Article  PubMed  Google Scholar 

  87. Altiparmak MR, Bilici A, Kisacik B, Ozguroglu M. Flutamide-induced acute renal failure in a patient with metastatic prostate cancer. Med Oncol. 2002;19(2):117–9.

    Article  PubMed  Google Scholar 

  88. Merck Sharp & Dohme Limited. Remicade 100 mg powder for concentrate for solution for infusion. http://www.medicines.org.uk/emc/medicine/3236. Accessed 21 Jan 2016.

  89. http://www.mhra.gov.uk/home/groups/spcpil/documents/spcpil/con1437715112601.pdf. Accessed 21 Jan 2016.

  90. Perrier A, Martin PY, Favre H, Muller AF, Urban P, Chevrolet JC. Very severe self-poisoning lithium carbonate intoxication causing a myocardial infarction. Chest. 1991;100(3):863–5.

    Article  CAS  PubMed  Google Scholar 

  91. Alvarez Navascués R, Bastardo Z, Fernández Díaz M, Guerediaga J, Quiñones L, Pinto J. Loratadina y nefritis intersticial aguda. [Acute interstitial nephritis induced by loratadine.] Nefrologia. 2003;23(4):355–8.

  92. Girard JP, Haenni B, Bergoz R, Kapanci Y, Cruchaud A. Lupoid hepatitis following administration of penicillin. Case report and immunological studies. Helv Med Acta. 1967;34(1):23–35.

  93. Goldstein L, Ishak KG. Hepatic injury associated with penicillin therapy. Arch Pathol. 1974;98(2):114–7.

    CAS  PubMed  Google Scholar 

  94. Beeley L, Gourevitch A, Kendall MJ. Jaundice after oral penicillin. Lancet. 1976;2(7998):1297.

    Article  CAS  PubMed  Google Scholar 

  95. Oñate J, Montejo M, Aguirrebengoa K, Ruiz-Irastorza G, González de Zárate P, Aguirre C. Hepatotoxicity associated with penicillin V therapy. Clin Infect Dis. 1995;20(2):474–5.

    Article  PubMed  Google Scholar 

  96. Desmeules S, Bergeron MJ, Isenring P. Acute phosphate nephropathy and renal failure. N Engl J Med. 2003;349(10):1006–7.

    Article  CAS  PubMed  Google Scholar 

  97. Gonlusen G, Akgun H, Ertan A, Olivero J, Truong LD. Renal failure and nephrocalcinosis associated with oral sodium phosphate bowel cleansing clinical patterns and renal biopsy findings. Arch Pathol Lab Med. 2006;130(1):101–6.

    PubMed  Google Scholar 

  98. Heher EC, Thier SO, Rennke H, Humphreys BD. Adverse renal and metabolic effects associated with oral sodium phosphate bowel preparation. Clin J Am Soc Nephrol. 2008;3(5):1494–503.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Anonymous. Oral sodium phosphate products. New alert on acute phosphate nephropathy. WHO Newslett. 2009;1:1.

  100. Nyberg C, Hendel J, Nielsen OH. The safety of osmotically acting cathartics in colonic cleansing. Nat Rev Gastroenterol Hepatol. 2010;7(10):557–64.

    Article  PubMed  Google Scholar 

  101. Colic E, Marcussen N. Akut fosfatnefropati som komplikation til udrensning med oral natriumfosfat. [Acute phosphate nephropathy as a complication to bowel cleansing with oral sodium phosphate.]. Ugeskr Laeger. 2011;173(50):3270–1.

    PubMed  Google Scholar 

  102. Kounis NG, Mazarakis A, Tsigkas G, Giannopoulos S, Goudevenos J. Kounis syndrome: a new twist on an old disease. Future Cardiol. 2011;7(6):805–24.

    Article  PubMed  Google Scholar 

  103. Bramstedt J, Dissmann R. Akutes prärenales Nierenversagen und Elektrolytentgleisung durch das Cannabis-induzierte Hyperemesis-Syndrom. [Cannabinoid hyperemesis syndrome inducing acute prerenal failure and electrolyte disturbance.]. Dtsch Med Wochenschr. 2011;136(34–35):1720–2.

    Article  CAS  PubMed  Google Scholar 

  104. Kumagai T, Hori Y, Kishida Y, Yakumaru K, Takahashi T, Itou T. Acute renal failure and nephrotic syndrome associated with zafirlukast therapy. Nephrol Dial Transplant. 2003;18(10):2202–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Hauben.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this study.

Conflicts of interest

Manfred Hauben is a full-time employee of Pfizer Inc, owns stock/stock options in Pfizer Inc, and owns stock in other pharmaceutical companies that may manufacture and/or market medicines mentioned in this article and/or medicines that may be considered competitor medicines.

Jeffrey K. Aronson has published articles and edited textbooks dealing with adverse drug reactions and has received royalties for textbooks and payments for reports dealing with adverse drug reactions.

Robin E. Ferner has no conflicts of interest that are directly relevant to the content of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauben, M., Aronson, J.K. & Ferner, R.E. Evidence of Misclassification of Drug–Event Associations Classified as Gold Standard ‘Negative Controls’ by the Observational Medical Outcomes Partnership (OMOP). Drug Saf 39, 421–432 (2016). https://doi.org/10.1007/s40264-016-0392-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-016-0392-2

Keywords

Navigation