Skip to main content
Log in

Lysergic Acid Diethylamide (LSD) for the Treatment of Anxiety Disorders: Preclinical and Clinical Evidence

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Anxiety disorders (ADs) represent the sixth leading cause of disability worldwide, resulting in a significant global economic burden. Over 50% of individuals with ADs do not respond to standard therapies, making the identification of more effective anxiolytic drugs an ongoing research priority. In this work, we review the preclinical literature concerning the effects of lysergic acid diethylamide (LSD) on anxiety-like behaviors in preclinical models, and the clinical literature on anxiolytic effects of LSD in healthy volunteers and patients with ADs. Preclinical and clinical findings show that even if LSD may exacerbate anxiety acutely (both in “microdoses” and “full doses”), it induces long-lasting anxiolytic effects. Only two randomized controlled trials combining LSD and psychotherapy have been performed in patients with ADs with and without life-threatening conditions, showing a good safety profile and persisting decreases in anxiety outcomes. The effect of LSD on anxiety may be mediated by serotonin receptors (5-HT1A/1B, 5-HT2A/2C, and 5-HT7) and/or transporter in brain networks and circuits (default mode network, cortico–striato–thalamo–cortical circuit, and prefrontal cortex-amygdala circuit), involved in the modulation of anxiety. It remains unclear whether LSD can be an efficacious treatment alone or only when combined with psychotherapy, and if “microdosing” may elicit the same sustained anxiolytic effects as the “full doses”. Further randomized controlled trials with larger sample size cohorts of patients with ADs are required to clearly define the effective regimens, safety profile, efficacy, and feasibility of LSD for the treatment of ADs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cisler JM, Koster EH. Mechanisms of attentional biases towards threat in anxiety disorders: an integrative review. Clin Psychol Rev. 2010;30(2):203–16.

    Article  PubMed  Google Scholar 

  2. Stein DJ, Scott KM, de Jonge P, Kessler RC. Epidemiology of anxiety disorders: from surveys to nosology and back. Dialogues Clin Neurosci. 2017;19(2):127–36.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bandelow B, Michaelis S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci. 2015;17(3):327–35.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baxter AJ, Vos T, Scott KM, Ferrari AJ, Whiteford HA. The global burden of anxiety disorders in 2010. Psychol Med. 2014;44(11):2363–74.

    Article  CAS  PubMed  Google Scholar 

  5. Yang X, Fang Y, Chen H, Zhang T, Yin X, Man J, et al. Global, regional and national burden of anxiety disorders from 1990 to 2019: results from the Global Burden of Disease Study 2019. Epidemiol Psychiatr Sci. 2021;30: e36.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Konnopka A, König H. Economic burden of anxiety disorders: a systematic review and meta-analysis. Pharmacoeconomics. 2020;38(1):25–37.

    Article  PubMed  Google Scholar 

  7. Santomauro DF, Herrera AMM, Shadid J, Zheng P, Ashbaugh C, Pigott DM, et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet. 2021;398(10312):1700–12.

    Article  Google Scholar 

  8. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington: American Psychiatric Association; 2013.

    Book  Google Scholar 

  9. Bandelow B, Michaelis S, Wedekind D. Treatment of anxiety disorders. Dialogues Clin Neurosci. 2017;19(2):93–107.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Blier P, de Montigny C. Serotonin and drug-induced therapeutic responses in major depression, obsessive-compulsive and panic disorders. Neuropsychopharmacology. 1999;21(2 Suppl):91S-S98.

    Article  CAS  PubMed  Google Scholar 

  11. Owens MJ, Nemeroff CB. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem. 1994;40(2):288–95.

    Article  CAS  PubMed  Google Scholar 

  12. Kraus C, Castrén E, Kasper S, Lanzenberger R. Serotonin and neuroplasticity—links between molecular, functional and structural pathophysiology in depression. Neurosci Biobehav Rev. 2017;77:317–26.

    Article  CAS  PubMed  Google Scholar 

  13. Lowry CA, Johnson PL, Hay-Schmidt A, Mikkelsen J, Shekhar A. Modulation of anxiety circuits by serotonergic systems. Stress. 2005;8(4):233–46.

    Article  CAS  PubMed  Google Scholar 

  14. Grossman L, Utterback E, Stewart A, Gaikwad S, Chung KM, Suciu C, et al. Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res. 2010;214(2):277–84.

    Article  CAS  PubMed  Google Scholar 

  15. Páleníček T, Hliňák Z, Bubeníková-Valešová V, Novák T, Horáček J. Sex differences in the effects of N, N-diethyllysergamide (LSD) on behavioural activity and prepulse inhibition. Progress Neuro-Psychopharmacol Biol Psychiatry. 2010;34(4):588–96.

    Article  Google Scholar 

  16. Lewis V, Bonniwell EM, Lanham JK, Ghaffari A, Sheshbaradaran H, Cao AB, et al. A non-hallucinogenic LSD analog with therapeutic potential for mood disorders. Cell Rep. 2023;42(3): 112203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Altemus M, Sarvaiya N, Neill EC. Sex differences in anxiety and depression clinical perspectives. Front Neuroendocrinol. 2014;35(3):320–30.

    Article  PubMed  PubMed Central  Google Scholar 

  18. McLean CP, Anderson ER. Brave men and timid women? A review of the gender differences in fear and anxiety. Clin Psychol Rev. 2009;29(6):496–505.

    Article  PubMed  Google Scholar 

  19. Spigner C, Hawkins WE, Loren W. Gender differences in perception of risk associated with alcohol and drug use among college students. Women Health. 1993;20(1):87–97.

    Article  CAS  PubMed  Google Scholar 

  20. Thiessen MS, Walsh Z, Bird BM, Lafrance A. Psychedelic use and intimate partner violence: the role of emotion regulation. J Psychopharmacol. 2018;32(7):749–55.

    Article  PubMed  Google Scholar 

  21. Kettner H, Mason NL, Kuypers KPC. Motives for classical and novel psychoactive substances use in psychedelic polydrug users. Contemp Drug Problems. 2019;46(3):304–20.

    Article  Google Scholar 

  22. Cameron LP, Nazarian A, Olson DE. Psychedelic microdosing: prevalence and subjective effects. J Psychoactive Drugs. 2020;52(2):113–22.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mittman SM, Geyer MA. Dissociation of multiple effects of acute LSD on exploratory behavior in rats by ritanserin and propranolol. Psychopharmacology. 1991;105(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  24. Mittman SM, Geyer MA. Effects of 5HT-1A agonists on locomotor and investigatory behaviors in rats differ from those of hallucinogens. Psychopharmacology. 1989;98(3):321–9.

    Article  CAS  PubMed  Google Scholar 

  25. Krebs KM, Geyer MA. Cross-tolerance studies of serotonin receptors involved in behavioral effects of LSD in rats. Psychopharmacology. 1994;113(3–4):429–37.

    Article  CAS  PubMed  Google Scholar 

  26. Geyer MA, Gordon J, Adams LM. Behavioral effects of xylamine-induced depletions of brain norepinephrine: interaction with LSD. Pharmacol Biochem Behavior. 1985;23(4):619–25.

    Article  CAS  Google Scholar 

  27. Adams LM, Geyer MA. A proposed animal model for hallucinogens based on LSD’s effects on patterns of exploration in rats. Behav Neurosci. 1985;99(5):881–900.

    Article  CAS  PubMed  Google Scholar 

  28. Adams LM, Geyer MA. LSD-induced alterations of locomotor patterns and exploration in rats. Psychopharmacology. 1982;77(2):179–85.

    Article  CAS  PubMed  Google Scholar 

  29. Geyer MA, Light RK, Rose GJ, Petersen LR, Horwitt DD, Adams LM, et al. A characteristic effect of hallucinogens on investigatory responding in rats. Psychopharmacology. 1979;65(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  30. Conway CN, Baker LE. Lysergic acid diethylamide produces anxiogenic effects in the rat light/dark test and elevated plus maze. Psi Chi J Psychol Res. 2022;27(3):197–204.

    Article  Google Scholar 

  31. De Gregorio D, Inserra A, Enns JP, Markopoulos A, Pileggi M, El Rahimy Y, et al. Repeated lysergic acid diethylamide (LSD) reverses stress-induced anxiety-like behavior, cortical synaptogenesis deficits and serotonergic neurotransmission decline. Neuropsychopharmacology. 2022;47:1188–98.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Strajhar P, Schmid Y, Liakoni E, Dolder PC, Rentsch KM, Kratschmar DV, et al. Acute effects of lysergic acid diethylamide on circulating steroid levels in healthy subjects. J Neuroendocrinol. 2016. https://doi.org/10.1111/jne.12374.

    Article  PubMed  Google Scholar 

  33. Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC, et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genetics. 1999;23(1):99–103.

    Article  CAS  PubMed  Google Scholar 

  34. Boyle MP, Kolber BJ, Vogt SK, Wozniak DF, Muglia LJ. Forebrain glucocorticoid receptors modulate anxiety-associated locomotor activation and adrenal responsiveness. J Neurosci. 2006;26(7):1971–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. De Gregorio D, Posa L, Ochoa-Sanchez R, McLaughlin R, Maione S, Comai S, et al. The hallucinogen d-lysergic diethylamide (LSD) decreases dopamine firing activity through 5-HT(1A), D(2) and TAAR(1) receptors. Pharmacol Res. 2016;113(Pt A):81–91.

    Article  PubMed  Google Scholar 

  36. Aghajanian GK. Mescaline and LSD facilitate the activation of locus coeruleus neurons by peripheral stimuli. Brain Res. 1980;186(2):492–8.

    Article  CAS  PubMed  Google Scholar 

  37. Inserra A, De Gregorio D, Rezai T, Lopez-Canul MG, Comai S, Gobbi G. Lysergic acid diethylamide differentially modulates the reticular thalamus, mediodorsal thalamus, and infralimbic prefrontal cortex: an in vivo electrophysiology study in male mice. J Psychopharmacol. 2021;35(4):469–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bershad AK, Schepers ST, Bremmer MP, Lee R, de Wit H. Acute subjective and behavioral effects of microdoses of lysergic acid diethylamide in healthy human volunteers. Biol Psychiatry. 2019;86(10):792–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gasser P, Holstein D, Michel Y, Doblin R, Yazar-Klosinski B, Passie T, et al. Safety and efficacy of lysergic acid diethylamide-assisted psychotherapy for anxiety associated with life-threatening diseases. J Nervous Mental Dis. 2014;202(7):513–20.

    Article  Google Scholar 

  40. Holze F, Gasser P, Müller F, Dolder PC, Liechti ME. Lysergic acid diethylamide–assisted therapy in patients with anxiety with and without a life-threatening illness: a randomized, double-blind, placebo-controlled phase II study. Biol Psychiatry. 2023;93(3):215–23.

    Article  CAS  PubMed  Google Scholar 

  41. Knudsen GM. Sustained effects of single doses of classical psychedelics in humans. Neuropsychopharmacology. 2023;48(1):145–50.

    Article  CAS  PubMed  Google Scholar 

  42. Inserra A, Campanale A, Cheishvili D, Dymov S, Wong A, Marcal N, et al. Modulation of DNA methylation and protein expression in the prefrontal cortex by repeated administration of D-lysergic acid diethylamide (LSD): impact on neurotropic, neurotrophic, and neuroplasticity signaling. Progress Neuro-Psychopharmacol Biol Psychiatry. 2022;119:110594.

    Article  CAS  Google Scholar 

  43. Ornelas IM, Cini FA, Wießner I, Marcos E, Araújo DB, Goto-Silva L, et al. Nootropic effects of LSD: behavioral, molecular and computational evidence. Exp Neurol. 2022;356: 114148.

    Article  CAS  PubMed  Google Scholar 

  44. Bergami M, Rimondini R, Santi S, Blum R, Götz M, Canossa M. Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proc Natl Acad Sci. 2008;105(40):15570–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hill AS, Sahay A, Hen R. Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology. 2015;40(10):2368–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rodgers RJ, Dalvi A. Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev. 1997;21(6):801–10.

    Article  CAS  PubMed  Google Scholar 

  47. Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol. 2003;463(1–3):3–33.

    Article  CAS  PubMed  Google Scholar 

  48. Bourin M, Hascoët M. The mouse light/dark box test. Eur J Pharmacol. 2003;463(1–3):55–65.

    Article  CAS  PubMed  Google Scholar 

  49. Dulawa SC, Hen R. Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci Biobehav Rev. 2005;29(4–5):771–83.

    Article  CAS  PubMed  Google Scholar 

  50. Rodriguiz RM, Nadkarni V, Means CR, Pogorelov VM, Chiu Y-T, Roth BL, et al. LSD-stimulated behaviors in mice require β-arrestin 2 but not β-arrestin 1. Sci Rep. 2021;11(1):17690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kurland AA. LSD in the supportive care of the terminally ill cancer patient. J Psychoactive Drugs. 1985;17(4):279–90.

    Article  CAS  PubMed  Google Scholar 

  52. Pahnke WN, Kurland AA, Unger S, Savage C, Grof S. The experimental use of psychedelic (LSD) psychotherapy. JAMA. 1970;212(11):1856–63.

    Article  CAS  PubMed  Google Scholar 

  53. Grof S, Goodman LE, Richards WA, Kurland AA. LSD-assisted psychotherapy in patients with terminal cancer. Int Pharmacopsychiatry. 1973;8:129–44.

    Article  CAS  PubMed  Google Scholar 

  54. Hutten N, Mason NL, Dolder PC, Theunissen EL, Holze F, Liechti ME, et al. Mood and cognition after administration of low LSD doses in healthy volunteers: a placebo controlled dose-effect finding study. Eur Neuropsychopharmacol. 2020;41:81–91.

    Article  CAS  PubMed  Google Scholar 

  55. Hutten NRPW, Mason NL, Dolder PC, Kuypers KPC. Motives and side-effects of microdosing with psychedelics among users. Int J Neuropsychopharmacol. 2019;22(7):426–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Murphy RJ, Sumner R, Evans W, Ponton R, Ram S, Godfrey K, et al. Acute mood-elevating properties of microdosed LSD in healthy volunteers: a home-administered randomised controlled trial. Biol Psychiatry. 2023. https://doi.org/10.1016/j.biopsych.2023.03.013.

    Article  Google Scholar 

  57. Gasser P, Kirchner K, Passie T. LSD-assisted psychotherapy for anxiety associated with a life-threatening disease: a qualitative study of acute and sustained subjective effects. J Psychopharmacol. 2015;29(1):57–68.

    Article  PubMed  Google Scholar 

  58. Colloca L, Barsky AJ. Placebo and Nocebo effects. N Engl J Med. 2020;382(6):554–61.

    Article  CAS  PubMed  Google Scholar 

  59. Aday JS, Heifets BD, Pratscher SD, Bradley E, Rosen R, Woolley JD. Great Expectations: recommendations for improving the methodological rigor of psychedelic clinical trials. Psychopharmacology. 2022;239(6):1989–2010.

    Article  CAS  PubMed Central  Google Scholar 

  60. Holze F, Vizeli P, Ley L, Müller F, Dolder P, Stocker M, et al. Acute dose-dependent effects of lysergic acid diethylamide in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology. 2021;46(3):537–44.

    Article  CAS  PubMed  Google Scholar 

  61. Dolder PC, Schmid Y, Haschke M, Rentsch KM, Liechti ME. Pharmacokinetics and concentration-effect relationship of oral LSD in humans. Int J Neuropsychopharmacol. 2016;19(1):pyv072.

    Article  Google Scholar 

  62. Müller F, Lenz C, Dolder P, Lang U, Schmidt A, Liechti M, et al. Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations. Acta Psychiatr Scand. 2017;136(6):648–57.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Carhart-Harris RL, Roseman L, Haijen E, Erritzoe D, Watts R, Branchi I, et al. Psychedelics and the essential importance of context. J Psychopharmacol. 2018;32(7):725–31.

    Article  PubMed  Google Scholar 

  64. Gobbi G, Inserra A, Greenway KT, Lifshitz M, Kirmayer LJ. Psychedelic medicine at a crossroads: advancing an integrative approach to research and practice. Transcult Psychiatry. 2022;59(5):718–24.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bogenschutz MP, Forcehimes AA. Development of a psychotherapeutic model for psilocybin-assisted treatment of alcoholism. J Humanist Psychol. 2016;57(4):389–414.

    Article  Google Scholar 

  66. Passie T, Guss J, Krähenmann R. Lower-dose psycholytic therapy—a neglected approach. Front Psychiatry. 2022. https://doi.org/10.3389/fpsyt.2022.1020505.

    Article  PubMed  PubMed Central  Google Scholar 

  67. de Wit H, Molla HM, Bershad A, Bremmer M, Lee R. Repeated low doses of LSD in healthy adults: a placebo-controlled, dose-response study. Addict Biol. 2022;27(2): e13143. https://doi.org/10.1111/adb.13143.

    Article  Google Scholar 

  68. Bershad A, Schepers S, Bremmer M, de Wit H. Subjective and behavioral effects of microdoses of LSD in healthy human volunteers. Biol Psychiatry. 2019;85(10 Supplement):S345.

    Article  Google Scholar 

  69. Family N, Maillet EL, Williams LT, Krediet E, Carhart-Harris RL, Williams TM, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of low dose lysergic acid diethylamide (LSD) in healthy older volunteers. Psychopharmacology. 2020;237(3):841–53.

    Article  CAS  PubMed  Google Scholar 

  70. Murray CH, Tare I, Perry CM, Malina M, Lee R, de Wit H. Low doses of LSD reduce broadband oscillatory power and modulate event-related potentials in healthy adults. Psychopharmacology. 2021;239:1735–47.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Holze F, Liechti ME, Hutten N, Mason NL, Dolder PC, Theunissen EL, et al. Pharmacokinetics and pharmacodynamics of lysergic acid diethylamide microdoses in healthy participants. Clin Pharmacol Therap. 2021;109(3):658–66.

    Article  CAS  Google Scholar 

  72. Holze F, Ley L, Müller F, Becker AM, Straumann I, Vizeli P, et al. Direct comparison of the acute effects of lysergic acid diethylamide and psilocybin in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology. 2022;47(6):1180–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Holze F, Avedisian I, Varghese N, Eckert A, Liechti ME. Role of the 5-HT(2A) receptor in acute effects of LSD on empathy and circulating oxytocin. Front Pharmacol. 2021;12: 711255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Holze F, Duthaler U, Vizeli P, Müller F, Borgwardt S, Liechti ME. Pharmacokinetics and subjective effects of a novel oral LSD formulation in healthy subjects. Br J Clin Pharmacol. 2019;85(7):1474–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schmid Y, Enzler F, Gasser P, Grouzmann E, Preller KH, Vollenweider FX, et al. Acute effects of lysergic acid diethylamide in healthy subjects. Biol Psychiatry. 2015;78(8):544–53.

    Article  CAS  PubMed  Google Scholar 

  76. Preller KH, Herdener M, Pokorny T, Planzer A, Kraehenmann R, Stämpfli P, et al. The fabric of meaning and subjective effects in LSD-induced states depend on serotonin 2A receptor activation. Curr Biol. 2017;27(3):451–7.

    Article  CAS  PubMed  Google Scholar 

  77. Holze F, Vizeli P, Müller F, Ley L, Duerig R, Varghese N, et al. Distinct acute effects of LSD, MDMA, and D-amphetamine in healthy subjects. Neuropsychopharmacology. 2020;45(3):462–71.

    Article  CAS  PubMed  Google Scholar 

  78. Dolder PC, Schmid Y, Muller F, Borgwardt S, Liechti ME. LSD acutely impairs fear recognition and enhances emotional empathy and sociality. Neuropsychopharmacology. 2016;41(11):2638–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vizeli P, Straumann I, Holze F, Schmid Y, Dolder PC, Liechti ME. Genetic influence of CYP2D6 on pharmacokinetics and acute subjective effects of LSD in a pooled analysis. Sci Rep. 2021;11(1):10851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schmitz GP, Jain MK, Slocum ST, Roth BL. 5-HT2A SNPs alter the pharmacological signaling of potentially therapeutic psychedelics. ACS Chem Neurosci. 2022;13(16):2386–98.

    Article  CAS  PubMed  Google Scholar 

  81. Schmid Y, Liechti ME. Long-lasting subjective effects of LSD in normal subjects. Psychopharmacology. 2018;235(2):535–45.

    Article  CAS  PubMed  Google Scholar 

  82. De Gregorio D, Comai S, Posa L, Gobbi G. d-Lysergic acid diethylamide (LSD) as a model of psychosis: mechanism of action and pharmacology. Int J Mol Sci. 2016;17(11):1953.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Goldberg HL, Finnerty RJ. The comparative efficacy of buspirone and diazepam in the treatment of anxiety. Am J Psychiatry. 1979;136(9):1184–7.

    Article  CAS  PubMed  Google Scholar 

  84. Rickels K, Schweizer E, DeMartinis N, Mandos L, Mercer C. Gepirone and diazepam in generalized anxiety disorder: a placebo-controlled trial. J Clin Psychopharmacol. 1997;17(4):272–7.

    Article  CAS  PubMed  Google Scholar 

  85. Blier P, de Montigny C. Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse. 1987;1(5):470–80.

    Article  CAS  PubMed  Google Scholar 

  86. Blier P, de Montigny C. Differential effect of gepirone on presynaptic and postsynaptic serotonin receptors: single-cell recording studies. J Clin Psychopharmacol. 1990;10(3 Suppl):13s–20s.

    Article  CAS  PubMed  Google Scholar 

  87. Norman A, Battaglia G, Creese I. [3H] WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity. Mol Pharmacol. 1985;28(6):487–94.

    CAS  PubMed  Google Scholar 

  88. Rickli A, Moning OD, Hoener MC, Liechti ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur Neuropsychopharmacol. 2016;26(8):1327–37.

    Article  CAS  PubMed  Google Scholar 

  89. Reissig C, Eckler J, Rabin R, Winter J. The 5-HT1A receptor and the stimulus effects of LSD in the rat. Psychopharmacology. 2005;182(2):197–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Weisstaub NV, Zhou M, Lira A, Lambe E, González-Maeso J, Hornung JP, et al. Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science. 2006;313(5786):536–40.

    Article  CAS  PubMed  Google Scholar 

  91. Mengod G, Palacios JM, Cortes R. Cartography of 5-HT1A and 5-HT2A receptor subtypes in prefrontal cortex and its projections. ACS Chem Neurosci. 2015;6(7):1089–98.

    Article  CAS  PubMed  Google Scholar 

  92. Beliveau V, Ganz M, Feng L, Ozenne B, Højgaard L, Fisher PM, et al. A high-resolution in vivo atlas of the human brain’s serotonin system. J Neurosci. 2017;37(1):120–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Celada P, Puig MV, Artigas F. Serotonin modulation of cortical neurons and networks. Front Integrat Neurosci. 2013;7:25.

    CAS  Google Scholar 

  94. Hannon J, Hoyer D. Molecular biology of 5-HT receptors. Behav Brain Res. 2008;195(1):198–213.

    Article  CAS  PubMed  Google Scholar 

  95. Benyamina A, Naassila M, Bourin M. Potential role of cortical 5-HT2A receptors in the anxiolytic action of cyamemazine in benzodiazepine withdrawal. Psychiatry Res. 2012;198(2):307–12.

    Article  CAS  PubMed  Google Scholar 

  96. Savignac HM, Couch Y, Stratford M, Bannerman DM, Tzortzis G, Anthony DC, et al. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice. Brain Behav Immunity. 2016;52:120–31.

    Article  CAS  Google Scholar 

  97. Preller KH, Burt JB, Ji JL, Schleifer CH, Adkinson BD, Stämpfli P, et al. Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor. Elife. 2018. https://doi.org/10.7554/eLife.35082.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Murphy K, Fox MD. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage. 2017;154:169–73.

    Article  PubMed  Google Scholar 

  99. Inserra A, De Gregorio D, Gobbi G. Psychedelics in psychiatry: neuroplastic, immunomodulatory, and neurotransmitter mechanisms. Pharmacol Rev. 2021;73(1):202–77.

    Article  CAS  PubMed  Google Scholar 

  100. Wing LL, Tapson GS, Geyer MA. 5HT-2 mediation of acute behavioral effects of hallucinogens in rats. Psychopharmacology. 1990;100(3):417–25.

    Article  CAS  PubMed  Google Scholar 

  101. De Gregorio D, Popic J, Enns JP, Inserra A, Skalecka A, Markopoulos A, et al. Lysergic acid diethylamide (LSD) promotes social behavior through mTORC1 in the excitatory neurotransmission. Proc Natl Acad Sci. 2021;118(5): e2020705118.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lesch K-P, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996;274(5292):1527–31.

    Article  CAS  PubMed  Google Scholar 

  103. Stein MB, Schork NJ, Gelernter J. Gene-by-environment (serotonin transporter and childhood maltreatment) interaction for anxiety sensitivity, an intermediate phenotype for anxiety disorders. Neuropsychopharmacology. 2008;33(2):312–9.

    Article  CAS  PubMed  Google Scholar 

  104. Kennedy SH, Lam RW, McIntyre RS, Tourjman SV, Bhat V, Blier P, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder: Sectin 3. Pharmacological treatments. Can J Psychiatry. 2016;61(9):540–60.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Murphy DL, Lesch K-P. Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci. 2008;9(2):85–96.

    Article  CAS  PubMed  Google Scholar 

  106. Kalueff A, Olivier J, Nonkes L, Homberg J. Conserved role for the serotonin transporter gene in rat and mouse neurobehavioral endophenotypes. Neurosci Biobehav Rev. 2010;34(3):373–86.

    Article  CAS  PubMed  Google Scholar 

  107. Rickli A, Luethi D, Reinisch J, Buchy D, Hoener MC, Liechti ME. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2, 5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacol. 2015;99:546–53.

    Article  CAS  Google Scholar 

  108. Krall C, Richards J, Rabin R, Winter J. Marked decrease of LSD-induced stimulus control in serotonin transporter knockout mice. Pharmacol Biochem Behav. 2008;88(3):349–57.

    Article  CAS  PubMed  Google Scholar 

  109. Kyzar EJ, Stewart AM, Kalueff AV. Effects of LSD on grooming behavior in serotonin transporter heterozygous (Sert+/−) mice. Behav Brain Res. 2016;296:47–52.

    Article  CAS  PubMed  Google Scholar 

  110. Rai SK, Tewari AK. Chapter 13—dual role of drugs: beneficial and harmful aspects. In: Tewari A, Tiwari S, editors. Synthesis of medicinal agents from plants. Elsevier: Amsterdam; 2018. p. 305–32.

    Chapter  Google Scholar 

  111. Fish EW, Sekinda M, Ferrari PF, Dirks A, Miczek KA. Distress vocalizations in maternally separated mouse pups: modulation via 5-HT(1A), 5-HT(1B) and GABA(A) receptors. Psychopharmacology. 2000;149(3):277–85.

    Article  CAS  PubMed  Google Scholar 

  112. Lin D, Parsons LH. Anxiogenic-like effect of serotonin(1B) receptor stimulation in the rat elevated plus-maze. Pharmacol Biochem Behav. 2002;71(4):581–7.

    Article  CAS  PubMed  Google Scholar 

  113. Tatarczyńska E, Kłodzińska A, Stachowicz K, Chojnacka-Wójcik E. Effects of a selective 5-HT1B receptor agonist and antagonists in animal models of anxiety and depression. Behav Pharmacol. 2004;15(8):523–34.

    Article  PubMed  Google Scholar 

  114. Meneses A. Effects of the 5-HT7 receptor antagonists SB-269970 and DR 4004 in autoshaping Pavlovian/instrumental learning task. Behav Brain Res. 2004;155(2):275–82.

    Article  CAS  PubMed  Google Scholar 

  115. Mnie-Filali O, Lambas-Señas L, Scarna H, Haddjeri N. Therapeutic potential of 5-HT7 receptors in mood disorders. Curr Drug Targets. 2009;10(11):1109–17.

    Article  CAS  PubMed  Google Scholar 

  116. Hemedah M, Coupar IM, Mitchelson FJ. Characterisation of a 5-HT(7) binding site in mouse ileum. Eur J Pharmacol. 2000;387(3):265–72.

    Article  CAS  PubMed  Google Scholar 

  117. Ruat M, Traiffort E, Leurs R, Tardivel-Lacombe J, Diaz J, Arrang JM, et al. Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc Natl Acad Sci. 1993;90(18):8547–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. To ZP, Bonhaus DW, Eglen RM, Jakeman LB. Characterization and distribution of putative 5-ht7 receptors in guinea-pig brain. Br J Pharmacol. 1995;115(1):107–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Müller F, Dolder PC, Schmidt A, Liechti ME, Borgwardt S. Altered network hub connectivity after acute LSD administration. Neuroimage Clin. 2018;18:694–701.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Imperatori C, Farina B, Adenzato M, Valenti EM, Murgia C, Marca GD, et al. Default mode network alterations in individuals with high-trait-anxiety: an EEG functional connectivity study. J Affect Disord. 2019;246:611–8.

    Article  PubMed  Google Scholar 

  121. Zhao XH, Wang PJ, Li CB, Hu ZH, Xi Q, Wu WY, et al. Altered default mode network activity in patient with anxiety disorders: an fMRI study. Eur J Radiol. 2007;63(3):373–8.

    Article  PubMed  Google Scholar 

  122. Coutinho JF, Fernandesl SV, Soares JM, Maia L, Gonçalves ÓF, Sampaio A. Default mode network dissociation in depressive and anxiety states. Brain Imaging Behavior. 2016;10(1):147–57.

    Article  PubMed  Google Scholar 

  123. Maresh EL, Allen JP, Coan JA. Increased default mode network activity in socially anxious individuals during reward processing. Mood Anxiety. 2014;4:7.

    Article  Google Scholar 

  124. Bashford-Largo J, Zhang R, Mathur A, Elowsky J, Schwartz A, Dobbertin M, et al. Reduced cortical volume of the default mode network in adolescents with generalized anxiety disorder. Anxiety. 2022;39(6):485–95.

    PubMed  Google Scholar 

  125. Imperatori C, Farina B, Adenzato M, Valenti EM, Murgia C, Marca GD, et al. Default mode network alterations in individuals with high-trait-anxiety: n EEG functional connectivity study. J Affect Disord. 2019;246:611–8.

    Article  PubMed  Google Scholar 

  126. Zhao X-H, Wang P-J, Li C-B, Hu Z-H, Xi Q, Wu W-Y, et al. Altered default mode network activity in patient with anxiety disorders: n fMRI study. Eur J Radiol. 2007;63(3):373–8.

    Article  PubMed  Google Scholar 

  127. Coutinho JF, Fernandesl SV, Soares JM, Maia L, Gonçalves ÓF, Sampaio A. Default mode network dissociation in depressive and anxiety states. Brain Imaging Behav. 2016;10(1):147–57.

    Article  PubMed  Google Scholar 

  128. Maresh EL, Allen JP, Coan JA. Increased default mode network activity in socially anxious individuals during reward processing. Biol Mood Anxiety Disord. 2014;4(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Bashford-Largo J, Zhang R, Mathur A, Elowsky J, Schwartz A, Dobbertin M, et al. Reduced cortical volume of the default mode network in adolescents with generalized anxiety disorder. Depress Anxiety. 2022;39(6):485–95.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci. 2001;98(2):676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Raichle ME. The brain’s default mode network. 2015;38:433–47.

    CAS  Google Scholar 

  132. Nolen-Hoeksema S. The role of rumination in depressive disorders and mixed anxiety/depressive symptoms. J Abnormal Psychol. 2000;109:504–11.

    Article  CAS  Google Scholar 

  133. Muris P, Roelofs J, Rassin E, Franken I, Mayer B. Mediating effects of rumination and worry on the links between neuroticism, anxiety and depression. Personality Individual Differ. 2005;39(6):1105–11.

    Article  Google Scholar 

  134. Stoliker D, Novelli L, Vollenweider FX, Egan GF, Preller KH, Razi A. Effective connectivity of functionally anticorrelated networks under LSD. Biol Psychiat. 2022;93:224–32.

    Article  PubMed  Google Scholar 

  135. Barnett L, Muthukumaraswamy SD, Carhart-Harris RL, Seth AK. Decreased directed functional connectivity in the psychedelic state. Neuroimage. 2020;209:116462.

    Article  CAS  PubMed  Google Scholar 

  136. Tagliazucchi E, Roseman L, Kaelen M, Orban C, Muthukumaraswamy Suresh D, Murphy K, et al. Increased with LSD-. Curr Biol. 2016;26(8):1043–50.

    Article  CAS  PubMed  Google Scholar 

  137. Smigielski L, Scheidegger M, Kometer M, Vollenweider FX. Psilocybin-assisted mindfulness training modulates self-consciousness and brain default mode network connectivity with lasting effects. Neuroimage. 2019;196:207–15.

    Article  CAS  PubMed  Google Scholar 

  138. Carhart-Harris RL, Muthukumaraswamy S, Roseman L, Kaelen M, Droog W, Murphy K, et al. Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc Natl Acad Sci. 2016;113(17):4853–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Walf AA, Frye CA. A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior. Neuropsychopharmacology. 2006;31(6):1097–111.

    Article  CAS  PubMed  Google Scholar 

  140. Liu Y, Rao B, Li S, Zheng N, Wang J, Bi L, et al. Distinct hypothalamic paraventricular nucleus inputs to the cingulate cortex and paraventricular thalamic nucleus modulate anxiety and arousal. Front Pharmacol. 2022;13:59.

    Google Scholar 

  141. Gisiger T, Boukadoum M. Mechanisms gating the flow of information in the cortex: what they might look like and what their uses may be. Front Neurosci. 2011;5:1.

    Google Scholar 

  142. Peters SK, Dunlop K, Downar J. Cortico-striatal-thalamic loop circuits of the salience network: a central pathway in psychiatric disease and treatment. Front Syst Neurosci. 2016. https://doi.org/10.3389/fnsys.2016.00104.

    Article  PubMed  PubMed Central  Google Scholar 

  143. El Boukhari H, Ouhaz Z, Ba-M’hamed S, Bennis M. Early lesion of the reticular thalamic nucleus disrupts the structure and function of the mediodorsal thalamus and prefrontal cortex. Dev Neurobiol. 2019;79(11–12):913–33.

    Article  PubMed  Google Scholar 

  144. Ouhaz Z, Ba-M’hamed S, Mitchell AS, Elidrissi A, Bennis M. Behavioral and cognitive changes after early postnatal lesions of the rat mediodorsal thalamus. Behav Brain Res. 2015;292:219–32.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Bishop S, Duncan J, Brett M, Lawrence AD. Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat Neurosci. 2004;7(2):184–8.

    Article  CAS  PubMed  Google Scholar 

  146. Zhang X, Suo X, Yang X, Lai H, Pan N, He M, et al. Structural and functional deficits and couplings in the cortico-striato-thalamo-cerebellar circuitry in social anxiety disorder. Transl Psychiatry. 2022;12(1):1–11.

    Article  CAS  Google Scholar 

  147. Vytal KE, Overstreet C, Charney DR, Robinson OJ, Grillon C. Sustained anxiety increases amygdala–dorsomedial prefrontal coupling: a mechanism for maintaining an anxious state in healthy adults. J Psychiatry Neurosci. 2014;39(5):321.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Olpe H-R. The cortical projection of the dorsal raphe nucleus: some electrophysiological and pharmacological properties. Brain Res. 1981;216(1):61–71.

    Article  CAS  PubMed  Google Scholar 

  149. Vollenweider FX, Geyer MA. A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Res Bull. 2001;56(5):495–507.

    Article  CAS  PubMed  Google Scholar 

  150. Geyer MA, Vollenweider FX. Serotonin research: contributions to understanding psychoses. Trends. 2008;29(9):445–53.

    CAS  Google Scholar 

  151. McKenna DJ, Saavedra JM. Autoradiography of LSD and 2, 5-dimethoxyphenylisopropylamine psychotomimetics demonstrates regional, specific cross-displacement in the rat brain. Eur J Pharmacol. 1987;142(2):313–5.

    Article  CAS  PubMed  Google Scholar 

  152. Barrett FS, Krimmel SR, Griffiths RR, Seminowicz DA, Mathur BN. Psilocybin acutely alters the functional connectivity of the claustrum with brain networks that support perception, memory, and attention. Neuroimage. 2020;218: 116980.

    Article  CAS  PubMed  Google Scholar 

  153. Niu M, Kasai A, Tanuma M, Seiriki K, Igarashi H, Kuwaki T, et al. Claustrum mediates bidirectional and reversible control of stress-induced anxiety responses. Sci Adv. 2022;8(11):6375.

    Article  Google Scholar 

  154. Kenwood MM, Kalin NH, Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology. 2022;47(1):260–75.

    Article  PubMed  Google Scholar 

  155. Mueller F, Lenz C, Dolder PC, Harder S, Schmid Y, Lang UE, et al. Acute effects of LSD on amygdala activity during processing of fearful stimuli in healthy subjects. Transl Psychiatry. 2017;7(4): e1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry. 2007;164(10):1476–88.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Aghajanian GK, Foote WE, Sheard MH. Lysergic acid diethylamide: sensitive neuronal units in the midbrain Raphe. Science. 1968;161(3842):706–8.

    Article  CAS  PubMed  Google Scholar 

  158. Bershad AK, Preller KH, Lee R, Keedy S, Wren-Jarvis J, Bremmer MP, et al. Preliminary report on the effects of a low dose of LSD on resting-state amygdala functional connectivity. Biol PsychiatryCognit Neurosci Neuroimaging. 2020;5(4):461–7.

    Google Scholar 

  159. Inserra A. Hypothesis: The psychedelic ayahuasca heals traumatic memories via a sigma 1 receptor-mediated epigenetic-mnemonic process. Front Pharmacol. 2018;9:330.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Hibicke M, Landry AN, Kramer HM, Talman ZK, Nichols CD. Psychedelics, but not ketamine, produce persistent antidepressant-like effects in a rodent experimental system for the study of depression. ACS Chem Neurosci. 2020;11(6):864–71.

    Article  CAS  PubMed  Google Scholar 

  161. Carhart-Harris RL, Kaelen M, Bolstridge M, Williams TM, Williams LT, Underwood R, et al. The paradoxical psychological effects of lysergic acid diethylamide (LSD). Psychol Med. 2016;46(7):1379–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Gobbi.

Ethics declarations

Funding

This work was supported by grants from the CIHR (Canadian Institutes of Health Research), FRQS (Fonds de Recherche Santé du Québec), and RQSHA (Réseau Québécois sur le Suicide, les Troubles de l’Humeur et Troubles Associés). G.G. holds the Canada Research Chair in Therapeutics for Mental Health. A.I. received the CIHR post-doctoral fellowship.

Conflict of interest

D.D.G. is a consultant at Diamond Therapeutics Inc., Toronto, ON, Canada. D.D.G. and G.G. are inventors of a pending patent on the method-of-use of LSD.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publications

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

Conceptualization: IA, GG; writing—original draft preparation: IA, AP, DDG, GG; writing—review and editing: IA, AP, DDG, GG; supervision: GG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inserra, A., Piot, A., De Gregorio, D. et al. Lysergic Acid Diethylamide (LSD) for the Treatment of Anxiety Disorders: Preclinical and Clinical Evidence. CNS Drugs 37, 733–754 (2023). https://doi.org/10.1007/s40263-023-01008-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-023-01008-5

Navigation