Skip to main content

Personalized Clinical Approaches to Anxiety Disorders

  • Chapter
  • First Online:
Anxiety Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1191))

Abstract

Anxiety disorders (ADs) are common psychiatric disorders, with a lifetime prevalence estimated at 33.7% in epidemiological studies. ADs are associated with serious disability and severe impairment in quality of life. Although several treatments [e.g. selective serotonin reuptake inhibitors (SSRIs), serotonin-noradrenaline reuptake inhibitors (SNRIs), pregabalin, tricyclic antidepressants and benzodiazepines and/or cognitive-behaviour therapy (CBT)] are recommended, a large number of patients (i.e. from 30 to 70%) do not achieve complete remission. According to the novel paradigm of personalized medicine, the search of possible predictors of both disease vulnerability and treatment response might be the best way to prevent more accurately disease risk and to tailor the most effective treatment for each individual. Although a growing body of studies have proposed several endophenotypes/markers (i.e. neurochemical, neuroimaging, physiological, genetic and epigenetic endophenotypes/markers) as possible predictors of ADs susceptibility and/or treatment response, findings are not robust enough to be considered acceptable to incorporate in the clinical practice. In order to obtain more reliable results, larger studies with a multimodal approach, based on a combination of different biomarkers, are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kessler RC, Petukhova M, Sampson NA, Zaslavsky AM, Wittchen HU. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int J Methods Psychiatr Res. 2012;21(3):169–84.

    Article  PubMed  PubMed Central  Google Scholar 

  2. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Association; 2013.

    Book  Google Scholar 

  3. World Health Organization (WHO). Depression and other common mental disorders: global health estimates 2017. Available from: https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf.

  4. Emdin CA, Odutayo A, Wong CX, Tran J, Hsiao AJ, Hunn BH. Meta-analysis of anxiety as a risk factor for cardiovascular disease. Am J Cardiol. 2016;118(4):511–9.

    Article  PubMed  Google Scholar 

  5. Bandelow B, Michaelis S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci. 2015;17(3):327–35.

    PubMed  PubMed Central  Google Scholar 

  6. Alonso J, Lepine JP, Committee ESMS. Overview of key data from the European Study of the Epidemiology of Mental Disorders (ESEMeD). J Clin Psychiatry. 2007;68(Suppl 2):3–9.

    PubMed  Google Scholar 

  7. Bandelow B, Michaelis S, Wedekind D. Treatment of anxiety disorders. Dialogues Clin Neurosci. 2017;19(2):93–107.

    PubMed  PubMed Central  Google Scholar 

  8. Koen N, Stein DJ. Pharmacotherapy of anxiety disorders: a critical review. Dialogues Clin Neurosci. 2011;13(4):423–37.

    PubMed  PubMed Central  Google Scholar 

  9. Prendes-Alvarez S, Nemeroff CB. Personalized medicine: prediction of disease vulnerability in mood disorders. Neurosci Lett. 2018;669:10–3.

    Article  CAS  PubMed  Google Scholar 

  10. Perna G, Nemeroff CB. Personalized medicine in psychiatry: back to the future. Pers Med Psychiatry. 2017;1–2(1)

    Article  Google Scholar 

  11. Batelaan NM, Van Balkom AJ, Stein DJ. Evidence-based pharmacotherapy of panic disorder: an update. Int J Neuropsychopharmacol. 2012;15(3):403–15.

    Article  CAS  PubMed  Google Scholar 

  12. Smith DJ, Escott-Price V, Davies G, Bailey ME, Colodro-Conde L, Ward J, et al. Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci. Mol Psychiatry. 2016;21(11):1644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. American Psychiatric Association. Practice guidelines for the treatment of patients with panic disorder. 2009.

    Google Scholar 

  14. Baldwin DS, Anderson IM, Nutt DJ, Allgulander C, Bandelow B, den Boer JA, et al. Evidence-based pharmacological treatment of anxiety disorders, post-traumatic stress disorder and obsessive-compulsive disorder: a revision of the 2005 guidelines from the British Association for Psychopharmacology. J Psychopharmacol. 2014;28(5):403–39.

    Article  CAS  PubMed  Google Scholar 

  15. Perna G, Schruers K, Alciati A, Caldirola D. Novel investigational therapeutics for panic disorder. Expert Opin Investig Drugs. 2015;24(4):491–505.

    Article  CAS  PubMed  Google Scholar 

  16. Perna G, Caldirola D, Bellodi L. Panic disorder: from respiration to the homeostatic brain. Acta Neuropsychiatr. 2004;16(2):57–67.

    Article  PubMed  Google Scholar 

  17. Roberson-Nay R, Klein DF, Klein RG, Mannuzza S, Moulton JL 3rd, Guardino M, et al. Carbon dioxide hypersensitivity in separation-anxious offspring of parents with panic disorder. Biol Psychiatry. 2010;67(12):1171–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003;160(4):636–45.

    Article  PubMed  Google Scholar 

  19. Perna G, Barbini B, Cocchi S, Bertani A, Gasperini M. 35% CO2 challenge in panic and mood disorders. J Affect Disord. 1995;33(3):189–94.

    Article  CAS  PubMed  Google Scholar 

  20. Perna G, Bussi R, Allevi L, Bellodi L. Sensitivity to 35% carbon dioxide in patients with generalized anxiety disorder. J Clin Psychiatry. 1999;60(6):379–84.

    Article  CAS  PubMed  Google Scholar 

  21. Perna G, Cocchi S, Bertani A, Arancio C, Bellodi L. Sensitivity to 35% CO2 in healthy first-degree relatives of patients with panic disorder. Am J Psychiatry. 1995;152(4):623–5.

    Article  CAS  PubMed  Google Scholar 

  22. Bellodi L, Perna G, Caldirola D, Arancio C, Bertani A, Di Bella D. CO2-induced panic attacks: a twin study. Am J Psychiatry. 1998;155(9):1184–8.

    Article  CAS  PubMed  Google Scholar 

  23. Battaglia M, Pesenti-Gritti P, Spatola CA, Ogliari A, Tambs K. A twin study of the common vulnerability between heightened sensitivity to hypercapnia and panic disorder. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(5):586–93.

    Article  PubMed  Google Scholar 

  24. Schmidt NB, Storey J, Greenberg BD, Santiago HT, Li Q, Murphy DL. Evaluating gene × psychological risk factor effects in the pathogenesis of anxiety: a new model approach. J Abnorm Psychol. 2000;(2):308–20.

    Article  CAS  PubMed  Google Scholar 

  25. Perna G, di Bella D, Favaron E, Cucchi M, Liperi L, Bellodi L. Lack of relationship between CO2 reactivity and serotonin transporter gene regulatory region polymorphism in panic disorder. Am J Med Genet B Neuropsychiatr Genet. 2004;129B(1):41–3.

    Article  PubMed  Google Scholar 

  26. Schruers K, Esquivel G, van Duinen M, Wichers M, Kenis G, Colasanti A, et al. Genetic moderation of CO2-induced fear by 5-HTTLPR genotype. J Psychopharmacol. 2011;25(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  27. Bandelow B, Baldwin D, Abelli M, Bolea-Alamanac B, Bourin M, Chamberlain SR, et al. Biological markers for anxiety disorders, OCD and PTSD: a consensus statement. Part II: Neurochemistry, neurophysiology and neurocognition. World J Biol Psychiatry. 2017;18(3):162–214.

    Article  PubMed  Google Scholar 

  28. Eriksson E, Westberg P, Alling C, Thuresson K, Modigh K. Cerebrospinal fluid levels of monoamine metabolites in panic disorder. Psychiatry Res. 1991;36(3):243–51.

    Article  CAS  PubMed  Google Scholar 

  29. Charney DS, Woods SW, Heninger GR. Noradrenergic function in generalized anxiety disorder: effects of yohimbine in healthy subjects and patients with generalized anxiety disorder. Psychiatry Res. 1989;27(2):173–82.

    Article  CAS  PubMed  Google Scholar 

  30. Kalk NJ, Nutt DJ, Lingford-Hughes AR. The role of central noradrenergic dysregulation in anxiety disorders: evidence from clinical studies. J Psychopharmacol. 2011;25(1):3–16.

    Article  CAS  PubMed  Google Scholar 

  31. Bhad R. Red blood cell and platelet indices: a potential biomarker for panic disorder. J Neurosci Rural Pract. 2017;8(2):164.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cosci F, Mansueto G. Biological and clinical markers in panic disorder. Psychiatry Investig. 2019;16(1):27–36.

    Article  PubMed  Google Scholar 

  33. Schleifer SJ, Keller SE, Bartlett JA. Panic disorder and immunity: few effects on circulating lymphocytes, mitogen response, and NK cell activity. Brain Behav Immun. 2002;16(6):698–705.

    Article  CAS  PubMed  Google Scholar 

  34. Quagliato LA, Nardi AE. Cytokine alterations in panic disorder: a systematic review. J Affect Disord. 2018;228:91–6.

    Article  CAS  PubMed  Google Scholar 

  35. Grassi M, Caldirola D, Vanni G, Guerriero G, Piccinni M, Valchera A, et al. Baseline respiratory parameters in panic disorder: a meta-analysis. J Affect Disord. 2013;146(2):158–73.

    Article  PubMed  Google Scholar 

  36. Grassi M, Caldirola D, Di Chiaro NV, Riva A, Dacco S, Pompili M, et al. Are respiratory abnormalities specific for panic disorder? A meta-analysis. Neuropsychobiology. 2014;70(1):52–60.

    Article  PubMed  Google Scholar 

  37. Perna G, Caldirola D. Is panic disorder a disorder of physical fitness? A heuristic proposal. F1000Research. 2018;7:294.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Meuret AE, Rosenfield D, Wilhelm FH, Zhou E, Conrad A, Ritz T, et al. Do unexpected panic attacks occur spontaneously? Biol Psychiatry. 2011;70(10):985–91.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Perna G, Ieva A, Caldirola D, Bertani A, Bellodi L. Respiration in children at risk for panic disorder. Arch Gen Psychiatry. 2002;59(2):185–6.

    Article  PubMed  Google Scholar 

  40. Srinivasan K, Ashok MV, Vaz M, Yeragani VK. Decreased chaos of heart rate time series in children of patients with panic disorder. Depress Anxiety. 2002;15(4):159–67.

    Article  CAS  PubMed  Google Scholar 

  41. Chalmers JA, Quintana DS, Abbott MJ, Kemp AH. Anxiety disorders are associated with reduced heart rate variability: a meta-analysis. Front Psych. 2014;5:80.

    Google Scholar 

  42. Gorman JM, Kent JM, Sullivan GM, Coplan JD. Neuroanatomical hypothesis of panic disorder, revised. Am J Psychiatry. 2000;157(4):493–505.

    Article  CAS  PubMed  Google Scholar 

  43. Asami T, Nakamura R, Takaishi M, Yoshida H, Yoshimi A, Whitford TJ, et al. Smaller volumes in the lateral and basal nuclei of the amygdala in patients with panic disorder. PLoS One. 2018;13(11):e0207163.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Feinstein JS, Buzza C, Hurlemann R, Follmer RL, Dahdaleh NS, Coryell WH, et al. Fear and panic in humans with bilateral amygdala damage. Nat Neurosci. 2013;16(3):270–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wiest G, Lehner-Baumgartner E, Baumgartner C. Panic attacks in an individual with bilateral selective lesions of the amygdala. Arch Neurol. 2006;63(12):1798–801.

    Article  PubMed  Google Scholar 

  46. Perna G, Guerriero G, Brambilla P, Caldirola D. Panic and the brainstem: clues from neuroimaging studies. CNS Neurol Disord Drug Targets. 2014;13(6):1049–56.

    Article  CAS  PubMed  Google Scholar 

  47. Goossens L, Leibold N, Peeters R, Esquivel G, Knuts I, Backes W, et al. Brainstem response to hypercapnia: a symptom provocation study into the pathophysiology of panic disorder. J Psychopharmacol. 2014;28(5):449–56.

    Article  PubMed  Google Scholar 

  48. Engel KR, Obst K, Bandelow B, Dechent P, Gruber O, Zerr I, et al. Functional MRI activation in response to panic-specific, non-panic aversive, and neutral pictures in patients with panic disorder and healthy controls. Eur Arch Psychiatry Clin Neurosci. 2016;266(6):557–66.

    Article  CAS  PubMed  Google Scholar 

  49. Sobanski T, Wagner G. Functional neuroanatomy in panic disorder: status quo of the research. World J Psychiatry. 2017;7(1):12–33.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bertani A, Caldirola D, Bussi R, Bellodi L, Perna G. The 35% CO2 hyperreactivity and clinical symptomatology in patients with panic disorder after 1 week of treatment with citalopram: an open study. J Clin Psychopharmacol. 2001;21(3):262–7.

    Article  CAS  PubMed  Google Scholar 

  51. Bertani A, Perna G, Arancio C, Caldirola D, Bellodi L. Pharmacologic effect of imipramine, paroxetine, and sertraline on 35% carbon dioxide hypersensitivity in panic patients: a double-blind, random, placebo-controlled study. J Clin Psychopharmacol. 1997;17(2):97–101.

    Article  CAS  PubMed  Google Scholar 

  52. Perna G, Bertani A, Caldirola D, Di Pasquale D, Migliarese G, Bellodi L. Modulation of hyperreactivity to 35% CO2 after one week of treatment with paroxetine and reboxetine: a double-blind, randomized study. J Clin Psychopharmacol. 2004;24(3):277–82.

    Article  PubMed  Google Scholar 

  53. Perna G, Bertani A, Caldirola D, Gabriele A, Cocchi S, Bellodi L. Antipanic drug modulation of 35% CO2 hyperreactivity and short-term treatment outcome. J Clin Psychopharmacol. 2002;22(3):300–8.

    Article  CAS  PubMed  Google Scholar 

  54. Perna G, Bertani A, Gabriele A, Politi E, Bellodi L. Modification of 35% carbon dioxide hypersensitivity across one week of treatment with clomipramine and fluvoxamine: a double-blind, randomized, placebo-controlled study. J Clin Psychopharmacol. 1997;17(3):173–8.

    Article  CAS  PubMed  Google Scholar 

  55. Schmidt NB, Trakowski JH, Staab JP. Extinction of panicogenic effects of a 35% CO2 challenge in patients with panic disorder. J Abnorm Psychol. 1997;106(4):630–8.

    Article  CAS  PubMed  Google Scholar 

  56. Lee IS, Kim KJ, Kang EH, Yu BH. beta-adrenoceptor affinity as a biological predictor of treatment response to paroxetine in patients with acute panic disorder. J Affect Disord. 2008;110(1-2):156–60.

    Article  CAS  PubMed  Google Scholar 

  57. Maddock RJ, Carter CS, Magliozzi JR, Gietzen DW. Evidence that decreased function of lymphocyte beta adrenoreceptors reflects regulatory and adaptive processes in panic disorder with agoraphobia. Am J Psychiatry. 1993;150(8):1219–25.

    Article  CAS  PubMed  Google Scholar 

  58. Gurguis GN, Vo SP, Griffith JM, Rush AJ. Platelet alpha2A-adrenoceptor function in major depression: Gi coupling, effects of imipramine and relationship to treatment outcome. Psychiatry Res. 1999;89(2):73–95.

    Article  CAS  PubMed  Google Scholar 

  59. Roestel C, Hoeping W, Deckert J. Hypophosphatemia in panic disorder. Am J Psychiatry. 2004;161(8):1499–500.

    Article  PubMed  Google Scholar 

  60. Perez-Costillas L, Montes MR, Martinez-Ortega JM, Carretero MD, Gutierrez-Rojas L, Gurpegui M. Phosphate levels as a possible state marker in panic disorder: preliminary study of a feasible laboratory measure for routine clinical practice. J Psychiatr Res. 2013;47(10):1357–62.

    Article  PubMed  Google Scholar 

  61. Beria P, Viana ACW, Behenck A, Heldt E, Manfro GG, Dreher CB. Respiratory subtype of panic disorder: can serum phosphate levels be a possible outcome to group cognitive-behavior therapy? J Affect Disord. 2018;235:474–9.

    Article  CAS  PubMed  Google Scholar 

  62. Kobayashi K, Shimizu E, Hashimoto K, Mitsumori M, Koike K, Okamura N, et al. Serum brain-derived neurotrophic factor (BDNF) levels in patients with panic disorder: as a biological predictor of response to group cognitive behavioral therapy. Prog Neuro-Psychopharmacol Biol Psychiatry. 2005;29(5):658–63.

    Article  CAS  Google Scholar 

  63. Garakani A, Martinez JM, Aaronson CJ, Voustianiouk A, Kaufmann H, Gorman JM. Effect of medication and psychotherapy on heart rate variability in panic disorder. Depress Anxiety. 2009;26(3):251–8.

    Article  PubMed  Google Scholar 

  64. Nardi AE, Valenca AM, Nascimento I, Lopes FL, Mezzasalma MA, Freire RC, et al. A three-year follow-up study of patients with the respiratory subtype of panic disorder after treatment with clonazepam. Psychiatry Res. 2005;137(1-2):61–70.

    Article  CAS  PubMed  Google Scholar 

  65. Tolin DF, Billingsley AL, Hallion LS, Diefenbach GJ. Low pre-treatment end-tidal CO2 predicts dropout from cognitive-behavioral therapy for anxiety and related disorders. Behav Res Ther. 2017;90:32–40.

    Article  PubMed  Google Scholar 

  66. Slaap BR, Boshuisen ML, van Roon AM, den Boer JA. Heart rate variability as predictor of nonresponse to mirtazapine in panic disorder: a preliminary study. Int Clin Psychopharmacol. 2002;17(2):69–74.

    Article  CAS  PubMed  Google Scholar 

  67. Wendt J, Hamm AO, Pane-Farre CA, Thayer JF, Gerlach A, Gloster AT, et al. Pretreatment cardiac vagal tone predicts dropout from and residual symptoms after exposure therapy in patients with panic disorder and agoraphobia. Psychother Psychosom. 2018;87(3):187–9.

    Article  PubMed  Google Scholar 

  68. Lai CH, Wu YT. Changes in gray matter volume of remitted first-episode, drug-naive, panic disorder patients after 6-week antidepressant therapy. J Psychiatr Res. 2013;47(1):122–7.

    Article  PubMed  Google Scholar 

  69. Lai CH, Wu YT, Yu PL, Yuan W. Improvements in white matter micro-structural integrity of right uncinate fasciculus and left fronto-occipital fasciculus of remitted first-episode medication-naive panic disorder patients. J Affect Disord. 2013;150(2):330–6.

    Article  PubMed  Google Scholar 

  70. Shin LM, Davis FC, Vanelzakker MB, Dahlgren MK, Dubois SJ. Neuroimaging predictors of treatment response in anxiety disorders. Biol Mood Anxiety Disord. 2013;3(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Santos VA, Carvalho DD, Van Ameringen M, Nardi AE, Freire RC. Neuroimaging findings as predictors of treatment outcome of psychotherapy in anxiety disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2018;

    Google Scholar 

  72. Reif A, Richter J, Straube B, Hofler M, Lueken U, Gloster AT, et al. MAOA and mechanisms of panic disorder revisited: from bench to molecular psychotherapy. Mol Psychiatry. 2014;19(1):122–8.

    Article  CAS  PubMed  Google Scholar 

  73. Maron E, Toru I, Must A, Tasa G, Toover E, Vasar V, et al. Association study of tryptophan hydroxylase 2 gene polymorphisms in panic disorder. Neurosci Lett. 2007;411(3):180–4.

    Article  CAS  PubMed  Google Scholar 

  74. Domschke K, Deckert J, O’Donovan MC, Glatt SJ. Meta-analysis of COMT val158met in panic disorder: ethnic heterogeneity and gender specificity. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(5):667–73.

    Article  CAS  PubMed  Google Scholar 

  75. Buttenschon HN, Kristensen AS, Buch HN, Andersen JH, Bonde JP, Grynderup M, et al. The norepinephrine transporter gene is a candidate gene for panic disorder. J Neural Transm. 2011;118(6):969–76.

    Article  CAS  PubMed  Google Scholar 

  76. Sand PG, Mori T, Godau C, Stober G, Flachenecker P, Franke P, et al. Norepinephrine transporter gene (NET) variants in patients with panic disorder. Neurosci Lett. 2002;333(1):41–4.

    Article  CAS  PubMed  Google Scholar 

  77. Otowa T, Kawamura Y, Nishida N, Sugaya N, Koike A, Yoshida E, et al. Meta-analysis of genome-wide association studies for panic disorder in the Japanese population. Transl Psychiatry. 2012;2:e186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Perna G, Favaron E, Di Bella D, Bussi R, Bellodi L. Antipanic efficacy of paroxetine and polymorphism within the promoter of the serotonin transporter gene. Neuropsychopharmacology. 2005;30(12):2230–5.

    Article  CAS  PubMed  Google Scholar 

  79. Saeki Y, Watanabe T, Ueda M, Saito A, Akiyama K, Inoue Y, et al. Genetic and pharmacokinetic factors affecting the initial pharmacotherapeutic effect of paroxetine in Japanese patients with panic disorder. Eur J Clin Pharmacol. 2009;65(7):685–91.

    Article  CAS  PubMed  Google Scholar 

  80. Aoki A, Ishiguro S, Watanabe T, Ueda M, Hayashi Y, Akiyama K, et al. Factors affecting discontinuation of initial treatment with paroxetine in panic disorder and major depressive disorder. Neuropsychiatr Dis Treat. 2014;10:1793–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ishiguro S, Watanabe T, Ueda M, Saeki Y, Hayashi Y, Akiyama K, et al. Determinants of pharmacodynamic trajectory of the therapeutic response to paroxetine in Japanese patients with panic disorder. Eur J Clin Pharmacol. 2011;67(12):1213–21.

    Article  CAS  PubMed  Google Scholar 

  82. Kim W, Choi YH, Yoon KS, Cho DY, Pae CU, Woo JM. Tryptophan hydroxylase and serotonin transporter gene polymorphism does not affect the diagnosis, clinical features and treatment outcome of panic disorder in the Korean population. Prog Neuro-Psychopharmacol Biol Psychiatry. 2006;30(8):1413–8.

    Article  CAS  Google Scholar 

  83. Yevtushenko OO, Oros MM, Reynolds GP. Early response to selective serotonin reuptake inhibitors in panic disorder is associated with a functional 5-HT1A receptor gene polymorphism. J Affect Disord. 2010;123(1-3):308–11.

    Article  CAS  PubMed  Google Scholar 

  84. Favaron E, Biffi S, Grassi M, Bellodi L, Perna G. Response to paroxetine and catecol-o-metil transferasi (comt) polymorphisms in panic disorder. 11th National Congress of the Italian Society of Psychopathology. Rome, Italy; 2006.

    Google Scholar 

  85. Woo JM, Yoon KS, Choi YH, Oh KS, Lee YS, Yu BH. The association between panic disorder and the L/L genotype of catechol-O-methyltransferase. J Psychiatr Res. 2004;38(4):365–70.

    Article  PubMed  Google Scholar 

  86. Shimada-Sugimoto M, Otowa T, Miyagawa T, Umekage T, Kawamura Y, Bundo M, et al. Epigenome-wide association study of DNA methylation in panic disorder. Clin Epigenetics. 2017;9:6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Schartner C, Ziegler C, Schiele MA, Kollert L, Weber H, Zwanzger P, et al. CRHR1 promoter hypomethylation: an epigenetic readout of panic disorder? Eur Neuropsychopharmacol. 2017;27(4):360–71.

    Article  CAS  PubMed  Google Scholar 

  88. Domschke K, Tidow N, Schrempf M, Schwarte K, Klauke B, Reif A, et al. Epigenetic signature of panic disorder: a role of glutamate decarboxylase 1 (GAD1) DNA hypomethylation? Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;46:189–96.

    Article  CAS  Google Scholar 

  89. Ziegler C, Richter J, Mahr M, Gajewska A, Schiele MA, Gehrmann A, et al. MAOA gene hypomethylation in panic disorder-reversibility of an epigenetic risk pattern by psychotherapy. Transl Psychiatry. 2016;6:e773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kroenke K, Spitzer RL, Williams JB, Monahan PO, Lowe B. Anxiety disorders in primary care: prevalence, impairment, comorbidity, and detection. Ann Intern Med. 2007;146(5):317–25.

    Article  PubMed  Google Scholar 

  91. Hoffman DL, Dukes EM, Wittchen HU. Human and economic burden of generalized anxiety disorder. Depress Anxiety. 2008;25(1):72–90.

    Article  PubMed  Google Scholar 

  92. Iny LJ, Pecknold J, Suranyi-Cadotte BE, Bernier B, Luthe L, Nair NP, et al. Studies of a neurochemical link between depression, anxiety, and stress from [3H]imipramine and [3H]paroxetine binding on human platelets. Biol Psychiatry. 1994;36(5):281–91.

    Article  CAS  PubMed  Google Scholar 

  93. Hernandez E, Lastra S, Urbina M, Carreira I, Lima L. Serotonin, 5-hydroxyindoleacetic acid and serotonin transporter in blood peripheral lymphocytes of patients with generalized anxiety disorder. Int Immunopharmacol. 2002;2(7):893–900.

    Article  CAS  PubMed  Google Scholar 

  94. Gerra G, Zaimovic A, Zambelli U, Timpano M, Reali N, Bernasconi S, et al. Neuroendocrine responses to psychological stress in adolescents with anxiety disorder. Neuropsychobiology. 2000;42(2):82–92.

    Article  CAS  PubMed  Google Scholar 

  95. Phillips AC, Batty GD, Gale CR, Lord JM, Arlt W, Carroll D. Major depressive disorder, generalised anxiety disorder, and their comorbidity: associations with cortisol in the Vietnam Experience Study. Psychoneuroendocrinology. 2011;36(5):682–90.

    Article  PubMed  Google Scholar 

  96. Steudte S, Stalder T, Dettenborn L, Klumbies E, Foley P, Beesdo-Baum K, et al. Decreased hair cortisol concentrations in generalised anxiety disorder. Psychiatry Res. 2011;186(2-3):310–4.

    Article  CAS  PubMed  Google Scholar 

  97. Stuhldreher N, Leibing E, Leichsenring F, Beutel ME, Herpertz S, Hoyer J, et al. The costs of social anxiety disorder: the role of symptom severity and comorbidities. J Affect Disord. 2014;165:87–94.

    Article  PubMed  Google Scholar 

  98. Molendijk ML, Bus BA, Spinhoven P, Penninx BW, Prickaerts J, Oude Voshaar RC, et al. Gender specific associations of serum levels of brain-derived neurotrophic factor in anxiety. World J Biol Psychiatry. 2012;13(7):535–43.

    Article  PubMed  Google Scholar 

  99. Pallanti S, Tofani T, Zanardelli M, Di Cesare ML, Ghelardini C. BDNF and Artemin are increased in drug-naive non-depressed GAD patients: preliminary data. Int J Psychiatry Clin Pract. 2014;18(4):255–60.

    Article  CAS  PubMed  Google Scholar 

  100. Carlino D, Francavilla R, Baj G, Kulak K, d’Adamo P, Ulivi S, et al. Brain-derived neurotrophic factor serum levels in genetically isolated populations: gender-specific association with anxiety disorder subtypes but not with anxiety levels or Val66Met polymorphism. PeerJ. 2015;3:e1252.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bankier B, Barajas J, Martinez-Rumayor A, Januzzi JL. Association between C-reactive protein and generalized anxiety disorder in stable coronary heart disease patients. Eur Heart J. 2008;29(18):2212–7.

    Article  CAS  PubMed  Google Scholar 

  102. Copeland WE, Shanahan L, Worthman C, Angold A, Costello EJ. Generalized anxiety and C-reactive protein levels: a prospective, longitudinal analysis. Psychol Med. 2012;42(12):2641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Koh KB, Lee BK. Reduced lymphocyte proliferation and interleukin-2 production in anxiety disorders. Psychosom Med. 1998;60(4):479–83.

    Article  CAS  PubMed  Google Scholar 

  104. Makovac E, Meeten F, Watson DR, Garfinkel SN, Critchley HD, Ottaviani C. Neurostructural abnormalities associated with axes of emotion dysregulation in generalized anxiety. NeuroImage Clin. 2016;10:172–81.

    Article  PubMed  Google Scholar 

  105. Schienle A, Ebner F, Schafer A. Localized gray matter volume abnormalities in generalized anxiety disorder. Eur Arch Psychiatry Clin Neurosci. 2011;261(4):303–7.

    Article  PubMed  Google Scholar 

  106. Etkin A, Prater KE, Schatzberg AF, Menon V, Greicius MD. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch Gen Psychiatry. 2009;66(12):1361–72.

    Article  PubMed  Google Scholar 

  107. Liao M, Yang F, Zhang Y, He Z, Song M, Jiang T, et al. Childhood maltreatment is associated with larger left thalamic gray matter volume in adolescents with generalized anxiety disorder. PLoS One. 2013;8(8):e71898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hilbert K, Pine DS, Muehlhan M, Lueken U, Steudte-Schmiedgen S, Beesdo-Baum K. Gray and white matter volume abnormalities in generalized anxiety disorder by categorical and dimensional characterization. Psychiatry Res. 2015;234(3):314–20.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Moon CM, Jeong GW. Abnormalities in gray and white matter volumes associated with explicit memory dysfunction in patients with generalized anxiety disorder. Acta Radiol. 2017;58(3):353–61.

    Article  PubMed  Google Scholar 

  110. Monk CS, Telzer EH, Mogg K, Bradley BP, Mai X, Louro HM, et al. Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Arch Gen Psychiatry. 2008;65(5):568–76.

    Article  PubMed  PubMed Central  Google Scholar 

  111. McClure EB, Monk CS, Nelson EE, Parrish JM, Adler A, Blair RJ, et al. Abnormal attention modulation of fear circuit function in pediatric generalized anxiety disorder. Arch Gen Psychiatry. 2007;64(1):97–106.

    Article  PubMed  Google Scholar 

  112. Fonzo GA, Ramsawh HJ, Flagan TM, Sullivan SG, Letamendi A, Simmons AN, et al. Common and disorder-specific neural responses to emotional faces in generalised anxiety, social anxiety and panic disorders. Br J Psychiatry. 2015;206(3):206–15.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Blair K, Shaywitz J, Smith BW, Rhodes R, Geraci M, Jones M, et al. Response to emotional expressions in generalized social phobia and generalized anxiety disorder: evidence for separate disorders. Am J Psychiatry. 2008;165(9):1193–202.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Whalen PJ, Johnstone T, Somerville LH, Nitschke JB, Polis S, Alexander AL, et al. A functional magnetic resonance imaging predictor of treatment response to venlafaxine in generalized anxiety disorder. Biol Psychiatry. 2008;63(9):858–63.

    Article  CAS  PubMed  Google Scholar 

  115. Fonzo GA, Etkin A. Affective neuroimaging in generalized anxiety disorder: an integrated review. Dialogues Clin Neurosci. 2017;19(2):169–79.

    PubMed  PubMed Central  Google Scholar 

  116. Oathes DJ, Hilt LM, Nitschke JB. Affective neural responses modulated by serotonin transporter genotype in clinical anxiety and depression. PloS One. 2015;10(2):e0115820.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  117. Nitschke JB, Sarinopoulos I, Oathes DJ, Johnstone T, Whalen PJ, Davidson RJ, et al. Anticipatory activation in the amygdala and anterior cingulate in generalized anxiety disorder and prediction of treatment response. Am J Psychiatry. 2009;166(3):302–10.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ball TM, Stein MB, Ramsawh HJ, Campbell-Sills L, Paulus MP. Single-subject anxiety treatment outcome prediction using functional neuroimaging. Neuropsychopharmacology. 2014;39(5):1254–61.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Moreira FP, Fabiao JD, Bittencourt G, Wiener CD, Jansen K, Oses JP, et al. The met allele of BDNF Val66Met polymorphism is associated with increased BDNF levels in generalized anxiety disorder. Psychiatr Genet. 2015;25(5):201–7.

    Article  CAS  PubMed  Google Scholar 

  120. Lin M, Zhu J, Yuan Y, Ren L, Qian M, Shen Z, et al. Association analysis of the brain-derived neurotrophic factor gene Val66Met polymorphism and gender with efficacy of antidepressants in the Chinese han population with generalized anxiety disorder. Genet Test Mol Biomarkers. 2018;22(3):199–206.

    Article  CAS  PubMed  Google Scholar 

  121. Wang Y, Zhang H, Li Y, Wang Z, Fan Q, Yu S, et al. BDNF Val66Met polymorphism and plasma levels in Chinese Han population with obsessive-compulsive disorder and generalized anxiety disorder. J Affect Disord. 2015;186:7–12.

    Article  CAS  PubMed  Google Scholar 

  122. Hettema JM, Prescott CA, Kendler KS. Genetic and environmental sources of covariation between generalized anxiety disorder and neuroticism. Am J Psychiatry. 2004;161(9):1581–7.

    Article  PubMed  Google Scholar 

  123. Lohoff FW, Aquino TD, Narasimhan S, Multani PK, Etemad B, Rickels K. Serotonin receptor 2A (HTR2A) gene polymorphism predicts treatment response to venlafaxine XR in generalized anxiety disorder. Pharmacogenomics J. 2013;13(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  124. Narasimhan S, Aquino TD, Multani PK, Rickels K, Lohoff FW. Variation in the catechol-O-methyltransferase (COMT) gene and treatment response to venlafaxine XR in generalized anxiety disorder. Psychiatry Res. 2012;198(1):112–5.

    Article  CAS  PubMed  Google Scholar 

  125. Cooper AJ, Narasimhan S, Rickels K, Lohoff FW. Genetic polymorphisms in the PACAP and PAC1 receptor genes and treatment response to venlafaxine XR in generalized anxiety disorder. Psychiatry Res. 2013;210(3):1299–300.

    Article  CAS  PubMed  Google Scholar 

  126. Saung WT, Narasimhan S, Lohoff FW. Lack of influence of DAT1 and DRD2 gene variants on antidepressant response in generalized anxiety disorder. Hum Psychopharmacol. 2014;29(4):316–21.

    Article  CAS  PubMed  Google Scholar 

  127. Narasimhan S, Aquino TD, Hodge R, Rickels K, Lohoff FW. Association analysis between the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene and treatment response to venlafaxine XR in generalized anxiety disorder. Neurosci Lett. 2011;503(3):200–2.

    Article  CAS  PubMed  Google Scholar 

  128. Nardi AE. Social anxiety disorder has social and economic burden. BMJ. 2003;327(7426):1287.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Dams J, Konig HH, Bleibler F, Hoyer J, Wiltink J, Beutel ME, et al. Excess costs of social anxiety disorder in Germany. J Affect Disord. 2017;213:23–9.

    Article  PubMed  Google Scholar 

  130. National Institute for Health and Care Excellence. Social anxiety disorder: recognition, assessment and treatment 2013. Available from: nice.org.uk/guidance/cg159.

  131. Mayo-Wilson E, Dias S, Mavranezouli I, Kew K, Clark DM, Ades AE, et al. Psychological and pharmacological interventions for social anxiety disorder in adults: a systematic review and network meta-analysis. Lancet Psychiatry. 2014;1(5):368–76.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Springer KS, Levy HC, Tolin DF. Remission in CBT for adult anxiety disorders: A meta-analysis. Clin Psychol Rev. 2018;61:1–8.

    Article  PubMed  Google Scholar 

  133. Liebowitz MR, Gelenberg AJ, Munjack D. Venlafaxine extended release vs placebo and paroxetine in social anxiety disorder. Arch Gen Psychiatry. 2005;62(2):190–8.

    Article  CAS  PubMed  Google Scholar 

  134. Van Ameringen MA, Lane RM, Walker JR, Bowen RC, Chokka PR, Goldner EM, et al. Sertraline treatment of generalized social phobia: a 20-week, double-blind, placebo-controlled study. Am J Psychiatry. 2001;158(2):275–81.

    Article  PubMed  Google Scholar 

  135. Pollack MH, Van Ameringen M, Simon NM, Worthington JW, Hoge EA, Keshaviah A, et al. A double-blind randomized controlled trial of augmentation and switch strategies for refractory social anxiety disorder. Am J Psychiatry. 2014;171(1):44–53.

    Article  PubMed  Google Scholar 

  136. Clauss JA, Blackford JU. Behavioral inhibition and risk for developing social anxiety disorder: a meta-analytic study. J Am Acad Child Adolesc Psychiatry. 2012;51(10):1066–75.. e1

    Article  PubMed  PubMed Central  Google Scholar 

  137. Kagan J, Reznick JS, Snidman N. Biological bases of childhood shyness. Science. 1988;240(4849):167–71.

    Article  CAS  PubMed  Google Scholar 

  138. Spence SH, Rapee RM. The etiology of social anxiety disorder: An evidence-based model. Behav Res Ther. 2016;86:50–67.

    Article  PubMed  Google Scholar 

  139. Hirshfeld-Becker DR, Biederman J, Henin A, Faraone SV, Davis S, Harrington K, et al. Behavioral inhibition in preschool children at risk is a specific predictor of middle childhood social anxiety: a five-year follow-up. J Dev Behav Pediatr. 2007;28(3):225–33.

    Article  PubMed  Google Scholar 

  140. Cremers HR, Roelofs K. Social anxiety disorder: a critical overview of neurocognitive research. Wiley Interdiscip Rev Cogn Sci. 2016;7(4):218–32.

    Article  PubMed  Google Scholar 

  141. Marazziti D, Abelli M, Baroni S, Carpita B, Ramacciotti CE, Dell’Osso L. Neurobiological correlates of social anxiety disorder: an update. CNS Spectr. 2015;20(2):100–11.

    Article  PubMed  Google Scholar 

  142. van Honk J, Bos PA, Terburg D, Heany S, Stein DJ. Neuroendocrine models of social anxiety disorder. Dialogues Clin Neurosci. 2015;17(3):287–93.

    PubMed  PubMed Central  Google Scholar 

  143. Jones C, Barrera I, Brothers S, Ring R, Wahlestedt C. Oxytocin and social functioning. Dialogues Clin Neurosci. 2017;19(2):193–201.

    PubMed  PubMed Central  Google Scholar 

  144. Giltay EJ, Enter D, Zitman FG, Penninx BW, van Pelt J, Spinhoven P, et al. Salivary testosterone: associations with depression, anxiety disorders, and antidepressant use in a large cohort study. J Psychosom Res. 2012;72(3):205–13.

    Article  PubMed  Google Scholar 

  145. Hoge EA, Lawson EA, Metcalf CA, Keshaviah A, Zak PJ, Pollack MH, et al. Plasma oxytocin immunoreactive products and response to trust in patients with social anxiety disorder. Depress Anxiety. 2012;29(11):924–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hoge EA, Pollack MH, Kaufman RE, Zak PJ, Simon NM. Oxytocin levels in social anxiety disorder. CNS Neurosci Ther. 2008;14(3):165–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Haller SPW, Mills KL, Hartwright CE, David AS, Cohen KK. When change is the only constant: The promise of longitudinal neuroimaging in understanding social anxiety disorder. Dev Cogn Neurosci. 2018;33:73–82.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Clauss JA, Avery SN, VanDerKlok RM, Rogers BP, Cowan RL, Benningfield MM, et al. Neurocircuitry underlying risk and resilience to social anxiety disorder. Depress Anxiety. 2014;31(10):822–33.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Lahat A, Benson BE, Pine DS, Fox NA, Ernst M. Neural responses to reward in childhood: relations to early behavioral inhibition and social anxiety. Soc Cogn Affect Neurosci. 2018;13(3):281–9.

    PubMed  Google Scholar 

  150. Harrewijn A, van der Molen MJW, van Vliet IM, Tissier RLM, Westenberg PM. Behavioral and EEG responses to social evaluation: A two-generation family study on social anxiety. Neuroimage Clin. 2018;17:549–62.

    Article  PubMed  Google Scholar 

  151. Nikolic M, de Vente W, Colonnesi C, Bogels SM. Autonomic arousal in children of parents with and without social anxiety disorder: a high-risk study. J Child Psychol Psychiatry. 2016;57(9):1047–55.

    Article  PubMed  Google Scholar 

  152. Nikolic M, Aktar E, Bogels S, Colonnesi C, de Vente W. Bumping heart and sweaty palms: physiological hyperarousal as a risk factor for child social anxiety. J Child Psychol Psychiatry. 2018;59(2):119–28.

    Article  PubMed  Google Scholar 

  153. Clark-Elford R, Nathan PJ, Auyeung B, Mogg K, Bradley BP, Sule A, et al. Effects of oxytocin on attention to emotional faces in healthy volunteers and highly socially anxious males. Int J Neuropsychopharmacol. 2014;18(2)

    Google Scholar 

  154. Guastella AJ, Howard AL, Dadds MR, Mitchell P, Carson DS. A randomized controlled trial of intranasal oxytocin as an adjunct to exposure therapy for social anxiety disorder. Psychoneuroendocrinology. 2009;34(6):917–23.

    Article  CAS  PubMed  Google Scholar 

  155. Enter D, Terburg D, Harrewijn A, Spinhoven P, Roelofs K. Single dose testosterone administration alleviates gaze avoidance in women with Social Anxiety Disorder. Psychoneuroendocrinology. 2016;63:26–33.

    Article  CAS  PubMed  Google Scholar 

  156. van Peer JM, Enter D, van Steenbergen H, Spinhoven P, Roelofs K. Exogenous testosterone affects early threat processing in socially anxious and healthy women. Biol Psychol. 2017;129:82–9.

    Article  PubMed  Google Scholar 

  157. Kilts CD, Kelsey JE, Knight B, Ely TD, Bowman FD, Gross RE, et al. The neural correlates of social anxiety disorder and response to pharmacotherapy. Neuropsychopharmacology. 2006;31(10):2243–53.

    Article  CAS  PubMed  Google Scholar 

  158. Klumpp H, Fitzgerald JM. Neuroimaging predictors and mechanisms of treatment response in social anxiety disorder: an overview of the Amygdala. Curr Psychiatry Rep. 2018;20(10):89.

    Article  PubMed  Google Scholar 

  159. Slaap BR, van Vliet IM, Westenberg HG, Den Boer JA. Responders and non-responders to drug treatment in social phobia: differences at baseline and prediction of response. J Affect Disord. 1996;39(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  160. Stein DJ, Stein MB, Pitts CD, Kumar R, Hunter B. Predictors of response to pharmacotherapy in social anxiety disorder: an analysis of 3 placebo-controlled paroxetine trials. J Clin Psychiatry. 2002;63(2):152–5.

    Article  CAS  PubMed  Google Scholar 

  161. Miskovic V, Moscovitch DA, Santesso DL, McCabe RE, Antony MM, Schmidt LA. Changes in EEG cross-frequency coupling during cognitive behavioral therapy for social anxiety disorder. Psychol Sci. 2011;22(4):507–16.

    Article  PubMed  Google Scholar 

  162. Moscovitch DA, Santesso DL, Miskovic V, McCabe RE, Antony MM, Schmidt LA. Frontal EEG asymmetry and symptom response to cognitive behavioral therapy in patients with social anxiety disorder. Biol Psychol. 2011;87(3):379–85.

    Article  PubMed  Google Scholar 

  163. Arad G, Abend R, Pine DS, Bar-Haim Y. A neuromarker of clinical outcome in attention bias modification therapy for social anxiety disorder. Depress Anxiety. 2018;

    Google Scholar 

  164. Merikangas KR, Lieb R, Wittchen HU, Avenevoli S. Family and high-risk studies of social anxiety disorder. Acta Psychiatr Scand Suppl. 2003;417:28–37.

    Article  Google Scholar 

  165. Scaini S, Belotti R, Ogliari A. Genetic and environmental contributions to social anxiety across different ages: a meta-analytic approach to twin data. J Anxiety Disord. 2014;28(7):650–6.

    Article  PubMed  Google Scholar 

  166. Elizabeth J, Gullone E, Tonge B, Watson SD. Social anxiety disorder in children and youth: a research update on aetiological factors. Couns Psychol Q. 2006;19(2):151–63.

    Article  Google Scholar 

  167. Bergman O, Ahs F, Furmark T, Appel L, Linnman C, Faria V, et al. Association between amygdala reactivity and a dopamine transporter gene polymorphism. Transl Psychiatry. 2014;4:e420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Domschke K, Stevens S, Beck B, Baffa A, Hohoff C, Deckert J, et al. Blushing propensity in social anxiety disorder: influence of serotonin transporter gene variation. J Neural Transm. 2009;116(6):663–6.

    Article  CAS  PubMed  Google Scholar 

  169. Furmark T, Marteinsdottir I, Frick A, Heurling K, Tillfors M, Appel L, et al. Serotonin synthesis rate and the tryptophan hydroxylase-2: G-703T polymorphism in social anxiety disorder. J Psychopharmacol. 2016;30(10):1028–35.

    Article  CAS  PubMed  Google Scholar 

  170. Stein MB, Keshaviah A, Haddad SA, Van Ameringen M, Simon NM, Pollack MH, et al. Influence of RGS2 on sertraline treatment for social anxiety disorder. Neuropsychopharmacology. 2014;39(6):1340–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Stein MB, Seedat S, Gelernter J. Serotonin transporter gene promoter polymorphism predicts SSRI response in generalized social anxiety disorder. Psychopharmacology. 2006;187(1):68–72.

    Article  CAS  PubMed  Google Scholar 

  172. Andersson E, Ruck C, Lavebratt C, Hedman E, Schalling M, Lindefors N, et al. Genetic polymorphisms in monoamine systems and outcome of cognitive behavior therapy for social anxiety disorder. PLoS One. 2013;8(11):e79015.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  173. Hedman E, Andersson E, Ljotsson B, Andersson G, Andersson E, Schalling M, et al. Clinical and genetic outcome determinants of Internet- and group-based cognitive behavior therapy for social anxiety disorder. Acta Psychiatr Scand. 2012;126(2):126–36.

    Article  CAS  PubMed  Google Scholar 

  174. Ziegler C, Dannlowski U, Brauer D, Stevens S, Laeger I, Wittmann H, et al. Oxytocin receptor gene methylation: converging multilevel evidence for a role in social anxiety. Neuropsychopharmacology. 2015;40(6):1528–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Puglia MH, Connelly JJ, Morris JP. Epigenetic regulation of the oxytocin receptor is associated with neural response during selective social attention. Transl Psychiatry. 2018;8(1):116.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  176. Kuo JR, Goldin PR, Werner K, Heimberg RG, Gross JJ. Childhood trauma and current psychological functioning in adults with social anxiety disorder. J Anxiety Disord. 2011;25(4):467–73.

    Article  PubMed  Google Scholar 

  177. Lochner C, Seedat S, Allgulander C, Kidd M, Stein D, Gerdner A. Childhood trauma in adults with social anxiety disorder and panic disorder: a cross-national study. Afr J Psychiatry. 2010;13(5):376–81.

    CAS  Google Scholar 

  178. Reinelt E, Stopsack M, Aldinger M, John U, Grabe HJ, Barnow S. Testing the diathesis-stress model: 5-HTTLPR, childhood emotional maltreatment, and vulnerability to social anxiety disorder. Am J Med Genet B Neuropsychiatr Genet. 2013;162B(3):253–61.

    Article  PubMed  CAS  Google Scholar 

  179. Jakubovski E, Bloch MH. Anxiety Disorder-Specific Predictors of Treatment Outcome in the Coordinated Anxiety Learning and Management (CALM) Trial. Psychiatry Q. 2016;87(3):445–64.

    Article  Google Scholar 

Download references

Conflicts of Interest

Dr. Charles B. Nemeroff’s disclosures are as follows:

Dr. Nemeroff has received funding from NIH and the Stanley Medical Research Institute; he has served as a consultant to Bracket (Clintara), Gerson Lehrman Group Healthcare and Biomedical Council, Fortress Biotech, Sunovion Pharmaceuticals, Janssen Research and Development, Magstim, Navitor Pharmaceuticals, Intra-Cellular Therapies, Takeda, Taisho Pharmaceutical and Xhale; he has served on the boards of directors for the American Foundation for Suicide Prevention, Gratitude America and the Anxiety Disorders Association of America; he is a stockholder in AbbVie, Antares, Bracket Intermediate Holding Corp., Celgene, OPKO Health, Seattle Genetics and Xhale; he serves on the scientific advisory boards of the American Foundation for Suicide Prevention, the Anxiety Disorders Association of America, the Brain and Behavior Research Foundation, Bracket (Clintara), the Laureate Institute for Brain Research, RiverMend Health, Skyland Trail and Xhale; he reports income sources or equity of $10,000 or more from American Psychiatric Publishing, Bracket (Clintara), CME Outfitters, Takeda and Xhale; he has patents on a method and devices for transdermal delivery of lithium (US 6,375,990B1) and a method of assessing antidepressant drug therapy via transport inhibition of monoamine neurotransmitters by ex vivo assay (US 7,148,027B2).

Dr. Giampaolo Perna’s disclosures are as follows:

Giampaolo Perna has received funding from Cariplo Foundation. He has served in the scientific advisor board of Medibio Ltd and has served as consultant for Lundbeck and Pfizer.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perna, G., Alciati, A., Sangiorgio, E., Caldirola, D., Nemeroff, C.B. (2020). Personalized Clinical Approaches to Anxiety Disorders. In: Kim, YK. (eds) Anxiety Disorders. Advances in Experimental Medicine and Biology, vol 1191. Springer, Singapore. https://doi.org/10.1007/978-981-32-9705-0_25

Download citation

Publish with us

Policies and ethics