Skip to main content
Log in

Targeting d-Amino Acid Oxidase (DAAO) for the Treatment of Schizophrenia: Rationale and Current Status of Research

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

In the brain, d-amino acid oxidase (DAAO) is a peroxisomal flavoenzyme. Through oxidative deamination by DAAO, d-serine, the main coagonist of synaptic N-methyl-d-aspartate receptors (NMDARs), is degraded into α-keto acids and ammonia; flavin adenine dinucleotide (FAD) is simultaneously reduced to dihydroflavine-adenine dinucleotide (FADH2), which is subsequently reoxidized to FAD, with hydrogen peroxide produced as a byproduct. NMDAR hypofunction is implicated in the pathogenesis of schizophrenia. In previous studies, compared with control subjects, patients with schizophrenia had lower d-serine levels in peripheral blood and cerebrospinal fluid but higher DAAO expression and activity in the brain. Inhibiting DAAO activity and slowing d-serine degradation by using DAAO inhibitors to enhance NMDAR function may be a new strategy for use in the treatment of schizophrenia. The aim of this leading article is to review the current research in DAAO inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Correll CU, Howes OD. Treatment-resistant schizophrenia: definition, predictors, and therapy options. J Clin Psychiatry. 2021;82:5. https://doi.org/10.4088/JCP.MY20096AH1C.

    Article  Google Scholar 

  2. Lewis DA, Lieberman JA. Catching up on schizophrenia: natural history and neurobiology. Neuron. 2000;28:325–34. https://doi.org/10.1016/s0896-6273(00)00111-2.

    Article  CAS  PubMed  Google Scholar 

  3. Green MF, Schooler NR, Kern RS, Frese FJ, Granberry W, Harvey PD, et al. Evaluation of functionally meaningful measures for clinical trials of cognition enhancement in schizophrenia. Am J Psychiatry. 2011;168:400–7. https://doi.org/10.1176/appi.ajp.2010.10030414.

    Article  PubMed  Google Scholar 

  4. Lin CH, Huang CL, Chang YC, Chen PW, Lin CY, Tsai GE, et al. Clinical symptoms, mainly negative symptoms, mediate the influence of neurocognition and social cognition on functional outcome of schizophrenia. Schizophr Res. 2013;146:231–7. https://doi.org/10.1016/j.schres.2013.02.009.

    Article  PubMed  Google Scholar 

  5. Iyo M, Tadokoro S, Kanahara N, Hashimoto T, Niitsu T, Watanabe H, et al. Optimal extent of dopamine D2 receptor occupancy by antipsychotics for treatment of dopamine supersensitivity psychosis and late-onset psychosis. J Clin Psychopharmacol. 2013;33:398–404. https://doi.org/10.1097/JCP.0b013e31828ea95c.

    Article  CAS  PubMed  Google Scholar 

  6. Stępnicki P, Kondej M, Kaczor AA. Current concepts and treatments of schizophrenia. Molecules. 2018;23:2087. https://doi.org/10.3390/molecules23082087.

    Article  CAS  PubMed Central  Google Scholar 

  7. Balu DT. The NMDA receptor and schizophrenia: from pathophysiology to treatment. Adv Pharmacol Sci. 2016;76:351–82. https://doi.org/10.1016/bs.apha.2016.01.006.

    Article  CAS  Google Scholar 

  8. Coyle JT. NMDA receptor and schizophrenia: a brief history. Schizophr Bull. 2012;38:920–6. https://doi.org/10.1093/schbul/sbs076.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kantrowitz JT, Javitt DC. N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull. 2010;83:108–21. https://doi.org/10.1016/j.brainresbull.2010.04.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin CH, Lane HY. Early identification and intervention of schizophrenia: insight from hypotheses of glutamate dysfunction and oxidative stress. Front Psychiatry. 2019;10:93. https://doi.org/10.3389/fpsyt.2019.00093.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Verrall L, Burnet PW, Betts JF, Harrison PJ. The neurobiology of d-amino acid oxidase and its involvement in schizophrenia. Mol Psychiatry. 2010;15:122–37. https://doi.org/10.1038/mp.2009.99.

    Article  CAS  PubMed  Google Scholar 

  12. Coyle JT. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol. 2006;26:365–84. https://doi.org/10.1007/s10571-006-9062-8.

    Article  CAS  PubMed  Google Scholar 

  13. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51:199–214. https://doi.org/10.1001/archpsyc.1994.03950030035004.

    Article  CAS  PubMed  Google Scholar 

  14. Mohn AR, Gainetdinov RR, Caron MG, Koller BH. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell. 1999;98:427–36. https://doi.org/10.1016/s0092-8674(00)81972-8.

    Article  CAS  PubMed  Google Scholar 

  15. Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H, Holmans PA, et al. Psychosis Endophenotypes International, C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7. https://doi.org/10.1038/nature13595.

    Article  CAS  PubMed Central  Google Scholar 

  16. Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8. https://doi.org/10.1038/s41586-022-04434-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakazawa K, Sapkota K. The origin of NMDA receptor hypofunction in schizophrenia. Pharmacol Ther. 2020;205: 107426. https://doi.org/10.1016/j.pharmthera.2019.107426.

    Article  CAS  PubMed  Google Scholar 

  18. Fuchs SA, Berger R, Klomp LWJ, de Koning TJ. d-Amino acids in the central nervous system in health and disease. Mol Genet Metab. 2005;85:168–80. https://doi.org/10.1016/j.ymgme.2005.03.003.

    Article  CAS  PubMed  Google Scholar 

  19. Price GW, Ahier RG, Middlemiss DN, Singh L, Tricklebank MD, Wong EH. In vivo labelling of the NMDA receptor channel complex by [3H]MK-801. Eur J Pharmacol. 1988;158:279–82. https://doi.org/10.1016/0014-2999(88)90080-5.

    Article  CAS  PubMed  Google Scholar 

  20. Bergeron R, Meyer TM, Coyle JT, Greene RW. Modulation of N-methyl-d-aspartate receptor function by glycine transport. Proc Natl Acad Sci USA. 1998;95:15730–4. https://doi.org/10.1073/pnas.95.26.15730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fossat P, Turpin FR, Sacchi S, Dulong J, Shi T, Rivet JM, et al. Glial D-serine gates NMDA receptors at excitatory synapses in prefrontal cortex. Cereb Cortex. 2012;22:595–606. https://doi.org/10.1093/cercor/bhr130.

    Article  PubMed  Google Scholar 

  22. Lane HY, Chang YC, Liu YC, Chiu CC, Tsai GE. Sarcosine or d-serine add-on treatment for acute exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled study. Arch Gen Psychiatry. 2005;62:1196–204. https://doi.org/10.1001/archpsyc.62.11.1196.

    Article  CAS  PubMed  Google Scholar 

  23. Lane HY, Liu YC, Huang CL, Chang YC, Liau CH, Perng CH, et al. Sarcosine (N-methylglycine) treatment for acute schizophrenia: a randomized, double-blind study. Biol Psychiatry. 2008;63:9–12. https://doi.org/10.1016/j.biopsych.2007.04.038.

    Article  CAS  PubMed  Google Scholar 

  24. Lane HY, Lin CH, Huang YJ, Liao CH, Chang YC, Tsai GE. A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and d-serine add-on treatment for schizophrenia. Int J Neuropsychopharmacol. 2010;13:451–60. https://doi.org/10.1017/s1461145709990939.

    Article  CAS  PubMed  Google Scholar 

  25. Tsai G, Yang P, Chung LC, Lange N, Coyle JT. d-Serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 1998;44:1081–9. https://doi.org/10.1016/s0006-3223(98)00279-0.

    Article  CAS  PubMed  Google Scholar 

  26. Heresco-Levy U, Javitt DC, Ebstein R, Vass A, Lichtenberg P, Bar G, et al. d-Serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol Psychiatry. 2005;57:577–85. https://doi.org/10.1016/j.biopsych.2004.12.037.

    Article  CAS  PubMed  Google Scholar 

  27. Krystal JH. Capitalizing on extrasynaptic glutamate neurotransmission to treat antipsychotic-resistant symptoms in schizophrenia. Biol Psychiatry. 2008;64:358–60. https://doi.org/10.1016/j.biopsych.2008.06.011.

    Article  PubMed  Google Scholar 

  28. Goh KK, Wu TH, Chen CH, Lu ML. Efficacy of N-methyl-d-aspartate receptor modulator augmentation in schizophrenia: a meta-analysis of randomised, placebo-controlled trials. J Psychopharmacol (Oxford, England). 2021;35:236–52. https://doi.org/10.1177/0269881120965937.

    Article  CAS  Google Scholar 

  29. Guercio GD, Panizzutti R. Potential and challenges for the clinical use of d-serine as a cognitive enhancer. Front Psychiatry. 2018;9:14. https://doi.org/10.3389/fpsyt.2018.00014.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gustafson EC, Stevens ER, Wolosker H, Miller RF. Endogenous d-serine contributes to NMDA-receptor-mediated light-evoked responses in the vertebrate retina. J Neurophysiol. 2007;98:122–30. https://doi.org/10.1152/jn.00057.2006.

    Article  CAS  PubMed  Google Scholar 

  31. Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H. Neuron-derived d-serine release provides a novel means to activate N-methyl-d-aspartate receptors. J Biol Chem. 2006;281:14151–62. https://doi.org/10.1074/jbc.M512927200.

    Article  CAS  PubMed  Google Scholar 

  32. Levin R, Dor-Abarbanel AE, Edelman S, Durrant AR, Hashimoto K, Javitt DC, et al. Behavioral and cognitive effects of the N-methyl-d-aspartate receptor co-agonist d-serine in healthy humans: initial findings. J Psychiatr Res. 2015;61:188–95. https://doi.org/10.1016/j.jpsychires.2014.12.007.

    Article  PubMed  Google Scholar 

  33. Foltyn VN, Bendikov I, De Miranda J, Panizzutti R, Dumin E, Shleper M, et al. Serine racemase modulates intracellular d-serine levels through an alpha, beta-elimination activity. J Biol Chem. 2005;280:1754–63. https://doi.org/10.1074/jbc.M405726200.

    Article  CAS  PubMed  Google Scholar 

  34. Baumgart F, Rodríguez-Crespo I. d-Amino acids in the brain: the biochemistry of brain serine racemase. FEBS J. 2008;275:3538–45. https://doi.org/10.1111/j.1742-4658.2008.06517.x.

    Article  CAS  PubMed  Google Scholar 

  35. Wolosker H. Serine racemase and the serine shuttle between neurons and astrocytes. Biochem Biophys Acta. 2011;1814:1558–66. https://doi.org/10.1016/j.bbapap.2011.01.001.

    Article  CAS  PubMed  Google Scholar 

  36. Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G. Physiological functions of d-amino acid oxidases: from yeast to humans. Cell Mol Life Sci. 2007;64:1373–94. https://doi.org/10.1007/s00018-007-6558-4.

    Article  CAS  PubMed  Google Scholar 

  37. Matsuo H, Kanai Y, Tokunaga M, Nakata T, Chairoungdua A, Ishimine H, et al. High affinity d- and l-serine transporter Asc-1: cloning and dendritic localization in the rat cerebral and cerebellar cortices. Neurosci Lett. 2004;358:123–6. https://doi.org/10.1016/j.neulet.2004.01.014.

    Article  CAS  PubMed  Google Scholar 

  38. Rutter AR, Fradley RL, Garrett EM, Chapman KL, Lawrence JM, Rosahl TW, et al. Evidence from gene knockout studies implicates Asc-1 as the primary transporter mediating d-serine reuptake in the mouse CNS. Eur J Neurosci. 2007;25:1757–66. https://doi.org/10.1111/j.1460-9568.2007.05446.x.

    Article  PubMed  Google Scholar 

  39. Calcia MA, Madeira C, Alheira FV, Silva TC, Tannos FM, Vargas-Lopes C, et al. Plasma levels of d-serine in Brazilian individuals with schizophrenia. Schizophr Res. 2012;142:83–7. https://doi.org/10.1016/j.schres.2012.09.014.

    Article  PubMed  Google Scholar 

  40. Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, et al. Decreased serum levels of d-serine in patients with schizophrenia: evidence in support of the N-methyl-d-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry. 2003;60:572–6. https://doi.org/10.1001/archpsyc.60.6.572.

    Article  CAS  PubMed  Google Scholar 

  41. Bendikov I, Nadri C, Amar S, Panizzutti R, De Miranda J, Wolosker H, et al. A CSF and postmortem brain study of d-serine metabolic parameters in schizophrenia. Schizophr Res. 2007;90:41–51. https://doi.org/10.1016/j.schres.2006.10.010.

    Article  PubMed  Google Scholar 

  42. Burnet PWJ, Eastwood SL, Bristow GC, Godlewska BR, Sikka P, Walker M, et al. d-Amino acid oxidase activity and expression are increased in schizophrenia. Mol Psychiatry. 2008;13:658–60. https://doi.org/10.1038/mp.2008.47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Madeira C, Freitas ME, Vargas-Lopes C, Wolosker H, Panizzutti R. Increased brain d-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr Res. 2008;101:76–83. https://doi.org/10.1016/j.schres.2008.02.002.

    Article  PubMed  Google Scholar 

  44. Ono K, Shishido Y, Park HK, Kawazoe T, Iwana S, Chung SP, et al. Potential pathophysiological role of d-amino acid oxidase in schizophrenia: immunohistochemical and in situ hybridization study of the expression in human and rat brain. J Neural Transm (Vienna). 2009;116:1335–47. https://doi.org/10.1007/s00702-009-0289-7.

    Article  CAS  Google Scholar 

  45. Sacchi S, Rosini E, Pollegioni L, Molla G. d-Amino acid oxidase inhibitors as a novel class of drugs for schizophrenia therapy. Curr Pharm Des. 2013;19:2499–511. https://doi.org/10.2174/1381612811319140002.

    Article  CAS  PubMed  Google Scholar 

  46. Verrall L, Walker M, Rawlings N, Benzel I, Kew JNC, Harrison PJ, et al. d-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur J Neurosci. 2007;26:1657–69. https://doi.org/10.1111/j.1460-9568.2007.05769.x.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Neurocrine Biosciences, Inc. Neurocrine biosciences announces top-line results from phase II INTERACT study evaluating luvadaxistat (NBI-1065844) for the treatment of negative symptoms and cognitive impairment associated with schizophrenia (CIAS). [Internet]. Neurocrine; 2021 [cited 2022 Aug 27]. Available from: https://www.prnewswire.com/news-releases/neurocrine-biosciences-announces-top-line-results-from-phase-ii-interact-study-evaluating-luvadaxistat-nbi-1065844-for-the-treatment-of-negative-symptoms-and-cognitive-impairment-associated-with-schizophrenia-cias-301238086.html.

  48. Lane HY, Lin CH, Green MF, Hellemann G, Huang CC, Chen PW, et al. Add-on treatment of benzoate for schizophrenia: a randomized, double-blind, placebo-controlled trial of d-amino acid oxidase inhibitor. JAMA Psychiat. 2013;70:1267–75. https://doi.org/10.1001/jamapsychiatry.2013.2159.

    Article  CAS  Google Scholar 

  49. Lin CH, Chen PK, Chang YC, Chuo LJ, Chen YS, Tsai GE, et al. Benzoate, a d-amino acid oxidase inhibitor, for the treatment of early-phase Alzheimer disease: a randomized, double-blind, placebo-controlled trial. Biol Psychiatry. 2014;75:678–85. https://doi.org/10.1016/j.biopsych.2013.08.010.

    Article  CAS  PubMed  Google Scholar 

  50. Lin CY, Liang SY, Chang YC, Ting SY, Kao CL, Wu YH, et al. Adjunctive sarcosine plus benzoate improved cognitive function in chronic schizophrenia patients with constant clinical symptoms: a randomised, double-blind, placebo-controlled trial. World J Biol Psychiatry. 2017;18:357–68. https://doi.org/10.3109/15622975.2015.1117654.

    Article  PubMed  Google Scholar 

  51. Lin C-H, Wang S-H, Lane H-Y. Effects of sodium benzoate, a d-amino acid oxidase inhibitor, on perceived stress and cognitive function among patients with late-life depression: a randomized, double-blind, sertraline- and placebo-controlled trial. Int J Neuropsychopharmacol. 2022;25:545–55. https://doi.org/10.1093/ijnp/pyac006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin CH, Lane HY, Tsai GE. Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol Biochem Behav. 2012;100:665–77. https://doi.org/10.1016/j.pbb.2011.03.023.

    Article  CAS  PubMed  Google Scholar 

  53. Harrison PJ. d-Amino acid oxidase inhibition: a new glutamate twist for clozapine augmentation in schizophrenia? Biol Psychiatry. 2018;84:396–8. https://doi.org/10.1016/j.biopsych.2018.06.001.

    Article  PubMed  Google Scholar 

  54. Lin CH, Lin CH, Chang YC, Huang YJ, Chen PW, Yang HT, et al. Sodium benzoate, a d-amino acid oxidase inhibitor, added to clozapine for the treatment of schizophrenia: a randomized, double-blind, placebo-controlled trial. Biol Psychiatry. 2018;84:422–32. https://doi.org/10.1016/j.biopsych.2017.12.006.

    Article  CAS  PubMed  Google Scholar 

  55. Labrie V, Wang W, Barger SW, Baker GB, Roder JC. Genetic loss of d-amino acid oxidase activity reverses schizophrenia-like phenotypes in mice. Genes Brain Behav. 2010;9:11–25. https://doi.org/10.1111/j.1601-183X.2009.00529.x.

    Article  CAS  PubMed  Google Scholar 

  56. Hashimoto K, Fujita Y, Horio M, Kunitachi S, Iyo M, Ferraris D, et al. Co-administration of a d-amino acid oxidase inhibitor potentiates the efficacy of d-serine in attenuating prepulse inhibition deficits after administration of dizocilpine. Biol Psychiatry. 2009;65:1103–6. https://doi.org/10.1016/j.biopsych.2009.01.002.

    Article  CAS  PubMed  Google Scholar 

  57. Labrie V, Duffy S, Wang W, Barger SW, Baker GB, Roder JC. Genetic inactivation of d-amino acid oxidase enhances extinction and reversal learning in mice. Learn Mem. 2009;16:28–37. https://doi.org/10.1101/lm.1112209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pritchett D, Hasan S, Tam SK, Engle SJ, Brandon NJ, Sharp T, et al. d-Amino acid oxidase knockout (Dao(−/−) ) mice show enhanced short-term memory performance and heightened anxiety, but no sleep or circadian rhythm disruption. Eur J Neurosci. 2015;41:1167–79. https://doi.org/10.1111/ejn.12880.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Adage T, Trillat AC, Quattropani A, Perrin D, Cavarec L, Shaw J, et al. In vitro and in vivo pharmacological profile of AS057278, a selective d-amino acid oxidase inhibitor with potential anti-psychotic properties. Eur Neuropsychopharmacol. 2008;18:200–14. https://doi.org/10.1016/j.euroneuro.2007.06.006.

    Article  CAS  PubMed  Google Scholar 

  60. Ferraris D, Duvall B, Ko YS, Thomas AG, Rojas C, Majer P, et al. Synthesis and biological evaluation of d-amino acid oxidase inhibitors. J Med Chem. 2008;51:3357–9. https://doi.org/10.1021/jm800200u.

    Article  CAS  PubMed  Google Scholar 

  61. Sershen H, Hashim A, Dunlop DS, Suckow RF, Cooper TB, Javitt DC. Modulating NMDA receptor function with d-amino acid oxidase inhibitors: understanding functional activity in PCP-treated mouse model. Neurochem Res. 2016;41:398–408. https://doi.org/10.1007/s11064-016-1838-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Smith SM, Uslaner JM, Yao L, Mullins CM, Surles NO, Huszar SL, et al. The behavioral and neurochemical effects of a novel d-amino acid oxidase inhibitor compound 8 [4H-thieno [3,2-b]pyrrole-5-carboxylic acid] and d-serine. J Pharmacol Exp Ther. 2009;328:921–30. https://doi.org/10.1124/jpet.108.147884.

    Article  CAS  PubMed  Google Scholar 

  63. Matsuura A, Fujita Y, Iyo M, Hashimoto K. Effects of sodium benzoate on pre-pulse inhibition deficits and hyperlocomotion in mice after administration of phencyclidine. Acta Neuropsychiatrica. 2015;27:159–67. https://doi.org/10.1017/neu.2015.1.

    Article  PubMed  Google Scholar 

  64. Yoneyama T, Sato S, Sykes A, Fradley R, Stafford S, Bechar S, et al. Mechanistic multilayer quantitative model for nonlinear pharmacokinetics, target occupancy and pharmacodynamics (PK/TO/PD) relationship of d-amino acid oxidase inhibitor, TAK-831 in mice. Pharm Res. 2020;37:164. https://doi.org/10.1007/s11095-020-02893-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nagy LV, Bali ZK, Kapus G, Pelsőczi P, Farkas B, Lendvai B, et al. Converging evidence on d-amino acid oxidase-dependent enhancement of hippocampal firing activity and passive avoidance learning in rats. Int J Neuropsychopharmacol. 2021;24:434–45. https://doi.org/10.1093/ijnp/pyaa095.

    Article  CAS  PubMed  Google Scholar 

  66. Fradley R, Goetghebeur P, Miller D, Burley R, Serrats J. S22 Pre-clinical assessment of Tak-831, a selective d-amino acid oxidase inhibitor, in animal models of schizophrenia. Schizophr Bull. 2019;45:S313–4. https://doi.org/10.1093/schbul/sbz020.567.

    Article  PubMed Central  Google Scholar 

  67. Lin CH, Chen PK, Wang SH, Lane HY. Effect of sodium benzoate on cognitive function among patients with behavioral and psychological symptoms of dementia: secondary analysis of a randomized clinical trial. JAMA Netw Open. 2021;4: e216156. https://doi.org/10.1001/jamanetworkopen.2021.6156.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lane HY, Tu CH, Lin WC, Lin CH. Brain activity of benzoate, a d-amino acid oxidase inhibitor, in patients with mild cognitive impairment in a randomized, double-blind, placebo controlled clinical trial. Int J Neuropsychopharmacol. 2021;24:392–9. https://doi.org/10.1093/ijnp/pyab001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Evins AE, Fitzgerald SM, Wine L, Rosselli R, Goff DC. Placebo-controlled trial of glycine added to clozapine in schizophrenia. Am J Psychiatry. 2000;157:826–8. https://doi.org/10.1176/appi.ajp.157.5.826.

    Article  CAS  PubMed  Google Scholar 

  70. Tsai GE, Yang P, Chung LC, Tsai IC, Tsai CW, Coyle JT. d-Serine added to clozapine for the treatment of schizophrenia. Am J Psychiatry. 1999;156:1822–5. https://doi.org/10.1176/ajp.156.11.1822.

    Article  CAS  PubMed  Google Scholar 

  71. Lane HY, Huang CL, Wu PL, Liu YC, Chang YC, Lin PY, et al. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biol Psychiatry. 2006;60:645–9. https://doi.org/10.1016/j.biopsych.2006.04.005.

    Article  CAS  PubMed  Google Scholar 

  72. Evins AE, Amico ET, Shih V, Goff DC. Clozapine treatment increases serum glutamate and aspartate compared to conventional neuroleptics. J Neural Transm (Vienna). 1997;104:761–6. https://doi.org/10.1007/bf01291892.

    Article  CAS  Google Scholar 

  73. Schwieler L, Linderholm KR, Nilsson-Todd LK, Erhardt S, Engberg G. Clozapine interacts with the glycine site of the NMDA receptor: electrophysiological studies of dopamine neurons in the rat ventral tegmental area. Life Sci. 2008;83:170–5. https://doi.org/10.1016/j.lfs.2008.05.014.

    Article  CAS  PubMed  Google Scholar 

  74. Kubota T, Jibiki I, Enokido F, Nakagawa H, Watanabe K. Effects of MK-801 on clozapine-induced potentiation of excitatory synaptic responses in the perforant path-dentate gyrus pathway in chronically prepared rabbits. Eur J Pharmacol. 2000;395:37–42. https://doi.org/10.1016/s0014-2999(00)00150-3.

    Article  CAS  PubMed  Google Scholar 

  75. Yamamori H, Hashimoto R, Fujita Y, Numata S, Yasuda Y, Fujimoto M, et al. Changes in plasma d-serine, l-serine, and glycine levels in treatment-resistant schizophrenia before and after clozapine treatment. Neurosci Lett. 2014;582:93–8. https://doi.org/10.1016/j.neulet.2014.08.052.

    Article  CAS  PubMed  Google Scholar 

  76. Scott JG, Baker A, Lim C, Foley S, Dark F, Gordon A, et al. Effect of sodium benzoate vs placebo among individuals with early psychosis: a randomized clinical trial. JAMA Netw Open. 2020. https://doi.org/10.1001/jamanetworkopen.2020.24335.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hashimoto K. Serine enantiomers as diagnostic biomarkers for schizophrenia and bipolar disorder. Eur Arch Psychiatry Clin Neurosci. 2016;266:83–5. https://doi.org/10.1007/s00406-015-0602-4.

    Article  PubMed  Google Scholar 

  78. Berkhout J, Post TM, Xu L, Zhang L, Wendland J, Faessel H, et al. Application of population PK/PD modeling and simulation to inform the design of a dose-finding study in patients with schizophrenia. Population Approach Group in Europe. 2019.

  79. Wang H, Norton J, Xu L, DeMartinis N, Sen R, Shah A, et al. Results of a randomized double-blind study evaluating luvadaxistat in adults with Friedreich ataxia. Ann Clin Transl Neurol. 2021;8:1343–52. https://doi.org/10.1002/acn3.51373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Neurocrine medical information call center. Study to evaluate the efficacy, safety, and tolerability of luvadaxistat in subjects with cognitive impairment associated with schizophrenia (ERUDITE). [Internet]. ClinicalTrials.Gov; 2022[cited 2022 Aug 27]. Available from: https://clinicaltrials.gov/ct2/show/NCT05182476.

  81. Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative stress-related mechanisms in schizophrenia pathogenesis and new treatment perspectives. Oxid Med Cell Longev. 2021. https://doi.org/10.1155/2021/8881770.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Steullet P, Cabungcal JH, Monin A, Dwir D, O’Donnell P, Cuenod M, et al. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: a “central hub” in schizophrenia pathophysiology? Schizophr Res. 2016;176:41–51. https://doi.org/10.1016/j.schres.2014.06.021.

    Article  CAS  PubMed  Google Scholar 

  83. Martins-de-Souza D, Harris LW, Guest PC, Bahn S. The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxid Redox Signal. 2011;15:2067–79. https://doi.org/10.1089/ars.2010.3459.

    Article  CAS  PubMed  Google Scholar 

  84. Raffa M, Atig F, Mhalla A, Kerkeni A, Mechri A. Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients. BMC Psychiatry. 2011;11:124. https://doi.org/10.1186/1471-244X-11-124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Do KQ, Cabungcal JH, Frank A, Steullet P, Cuenod M. Redox dysregulation, neurodevelopment, and schizophrenia. Curr Opin Neurobiol. 2009;19:220–30. https://doi.org/10.1016/j.conb.2009.05.001.

    Article  CAS  PubMed  Google Scholar 

  86. Carvalho AF, Solmi M, Sanches M, Machado MO, Stubbs B, Ajnakina O, et al. Evidence-based umbrella review of 162 peripheral biomarkers for major mental disorders. Transl Psychiatry. 2020;10:152. https://doi.org/10.1038/s41398-020-0835-5.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry. 2013;74:400–9. https://doi.org/10.1016/j.biopsych.2013.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nucifora LG, Tanaka T, Hayes LN, Kim M, Lee BJ, Matsuda T, et al. Reduction of plasma glutathione in psychosis associated with schizophrenia and bipolar disorder in translational psychiatry. Transl Psychiatry. 2017;7: e1215. https://doi.org/10.1038/tp.2017.178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Đorđević VV, Lazarević D, Ćosić V, Knežević M, Đorđević VB. Age-related changes of superoxide dismutase activity in patients with schizophrenia. Vojnosanit Pregl. 2017;74:31–7. https://doi.org/10.2298/VSP141202142D.

    Article  PubMed  Google Scholar 

  90. Huo L, Lu X, Wu F, Chang C, Ning Y, Zhang XY. Elevated activity of superoxide dismutase in male late-life schizophrenia and its correlation with clinical symptoms and cognitive deficits. BMC Psychiatry. 2021;21:606. https://doi.org/10.1186/s12888-021-03604-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Choi YB, Lipton SA. Redox modulation of the NMDA receptor. Cell Mol Life Sci CMLS. 2000;57:1535–41. https://doi.org/10.1007/pl00000638.

    Article  CAS  PubMed  Google Scholar 

  92. Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010;11:682–96. https://doi.org/10.1038/nrn2911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Radonjić NV, Knezević ID, Vilimanovich U, Kravić-Stevović T, Marina LV, Nikolić T, et al. Decreased glutathione levels and altered antioxidant defense in an animal model of schizophrenia: long-term effects of perinatal phencyclidine administration. Neuropharmacology. 2010;58:739–45. https://doi.org/10.1016/j.neuropharm.2009.12.009.

    Article  CAS  PubMed  Google Scholar 

  94. Sampaio L, Cysne Filho F, de Almeida JC, Diniz D, Patrocínio C, de Sousa C, et al. Advantages of the alpha-lipoic acid association with chlorpromazine in a model of schizophrenia induced by ketamine in rats: behavioral and oxidative stress evidences. Neuroscience. 2018;373:72–81. https://doi.org/10.1016/j.neuroscience.2018.01.008.

    Article  CAS  PubMed  Google Scholar 

  95. Steullet P, Cabungcal JH, Coyle J, Didriksen M, Gill K, Grace AA, et al. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry. 2017;22:936–43. https://doi.org/10.1038/mp.2017.47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cardis R, Cabungcal JH, Dwir D, Do KQ, Steullet P. A lack of GluN2A-containing NMDA receptors confers a vulnerability to redox dysregulation: consequences on parvalbumin interneurons, and their perineuronal nets. Neurobiol Dis. 2018;109(Pt A):64–75. https://doi.org/10.1016/j.nbd.2017.10.006.

    Article  CAS  PubMed  Google Scholar 

  97. Hardingham GE, Do KQ. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosci. 2016;17:125–34. https://doi.org/10.1038/nrn.2015.19.

    Article  CAS  PubMed  Google Scholar 

  98. Bókkon I, Antal I. Schizophrenia: redox regulation and volume neurotransmission. Curr Neuropharmacol. 2011;9:289–300. https://doi.org/10.2174/157015911795596504.

    Article  PubMed  PubMed Central  Google Scholar 

  99. El-Shennawy L, Kamel M, Khalaf A, Yousef MI. Dose-dependent reproductive toxicity of sodium benzoate in male rats: inflammation, oxidative stress and apoptosis. Reprod Toxicol (Elmsford, NY). 2020;98:92–8. https://doi.org/10.1016/j.reprotox.2020.08.014.

    Article  CAS  Google Scholar 

  100. Yetuk G, Pandir D, Bas H. Protective role of catechin and quercetin in sodium benzoate-induced lipid peroxidation and the antioxidant system in human erythrocytes in vitro. Sci World J. 2014. https://doi.org/10.1155/2014/874824.

    Article  Google Scholar 

  101. Khan IS, Ali MN, Hamid R, Ganie SA. Genotoxic effect of two commonly used food dyes metanil yellow and carmoisine using Allium cepa L. as indicator. Toxicol Rep. 2020;7:370–5. https://doi.org/10.1016/j.toxrep.2020.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Olofinnade AT, Onaolapo AY, Onaolapo OJ, Olowe OA. The potential toxicity of food-added sodium benzoate in mice is concentration-dependent. Toxicol Res. 2021;10:561–9. https://doi.org/10.1093/toxres/tfab024.

    Article  Google Scholar 

  103. Xu W, Li T, Gao L, Lenahan C, Zheng J, Yan J, et al. Sodium benzoate attenuates secondary brain injury by inhibiting neuronal apoptosis and reducing mitochondria-mediated oxidative stress in a rat model of intracerebral hemorrhage: possible involvement of DJ-1/Akt/IKK/NFκB pathway. Front Mol Neurosci. 2019;12:105. https://doi.org/10.3389/fnmol.2019.00105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Khan IS, Dar KB, Ganie SA, Ali MN. Toxicological impact of sodium benzoate on inflammatory cytokines, oxidative stress and biochemical markers in male Wistar rats. Drug Chem Toxicol. 2022;45:1345–54. https://doi.org/10.1080/01480545.2020.1825472.

    Article  CAS  PubMed  Google Scholar 

  105. Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis. 2013;3:461–91. https://doi.org/10.3233/JPD-130230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y. Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front Physiol. 2021;12: 627837. https://doi.org/10.3389/fphys.2021.627837.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Dolgacheva LP, Berezhnov AV, Fedotova EI, Zinchenko VP, Abramov AY. Role of DJ-1 in the mechanism of pathogenesis of Parkinson’s disease. J Bioenerg Biomembr. 2019;51:175–88. https://doi.org/10.1007/s10863-019-09798-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Takahashi K, Hayashi F, Nishikawa T. In vivo evidence for the link between l- and d-serine metabolism in rat cerebral cortex. J Neurochem. 1997;69:1286–90. https://doi.org/10.1046/j.1471-4159.1997.69031286.x.

    Article  CAS  PubMed  Google Scholar 

  109. Hasegawa H, Masuda N, Natori H, Shinohara Y, Ichida K. Pharmacokinetics and toxicokinetics of d-serine in rats. J Pharm Biomed Anal. 2019;162:264–71. https://doi.org/10.1016/j.jpba.2018.09.026.

    Article  CAS  PubMed  Google Scholar 

  110. Carone FA, Ganote CE. d-Serine nephrotoxicity. The nature of proteinuria, glucosuria, and aminoaciduria in acute tubular necrosis. Arch Pathol. 1975;99:658–62.

    CAS  PubMed  Google Scholar 

  111. Meftah A, Hasegawa H, Kantrowitz JT. d-Serine: a cross species review of safety. Front Psychiatry. 2021;12: 726365. https://doi.org/10.3389/fpsyt.2021.726365.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kantrowitz JT, Epstein ML, Lee M, Lehrfeld N, Nolan KA, Shope C, et al. Improvement in mismatch negativity generation during d-serine treatment in schizophrenia: correlation with symptoms. Schizophr Res. 2018;191:70–9. https://doi.org/10.1016/j.schres.2017.02.027.

    Article  PubMed  Google Scholar 

  113. Ermilov M, Gelfin E, Levin R, Lichtenberg P, Hashimoto K, Javitt DC, et al. A pilot double-blind comparison of d-serine and high-dose olanzapine in treatment-resistant patients with schizophrenia. Schizophr Res. 2013;150:604–5. https://doi.org/10.1016/j.schres.2013.09.018.

    Article  PubMed  Google Scholar 

  114. Choi SR, Roh DH, Yoon SY, Choi HS, Kang SY, Han HJ, et al. Astrocyte d-serine modulates the activation of neuronal NOS leading to the development of mechanical allodynia in peripheral neuropathy. Mol Pain. 2019;15:1744806919843046. https://doi.org/10.1177/1744806919843046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Williams RE, Lock EA. Sodium benzoate attenuates d-serine induced nephrotoxicity in the rat. Toxicology. 2005;207:35–48. https://doi.org/10.1016/j.tox.2004.08.008.

    Article  CAS  PubMed  Google Scholar 

  116. Maekawa M, Okamura T, Kasai N, Hori Y, Summer KH, Konno R. d-Amino-acid oxidase is involved in d-serine-induced nephrotoxicity. Chem Res Toxicol. 2005;18:1678–82. https://doi.org/10.1021/tx0500326.

    Article  CAS  PubMed  Google Scholar 

  117. Park HK, Shishido Y, Ichise-Shishido S, Kawazoe T, Ono K, Iwana S, et al. Potential role for astroglial d-amino acid oxidase in extracellular d-serine metabolism and cytotoxicity. J Biochem. 2006;139:295–304. https://doi.org/10.1093/jb/mvj036.

    Article  CAS  PubMed  Google Scholar 

  118. Krug AW, Völker K, Dantzler WH, Silbernagl S. Why is d-serine nephrotoxic and alpha-aminoisobutyric acid protective? Am J Physiol Renal Physiol. 2007;293:F382–90. https://doi.org/10.1152/ajprenal.00441.2006.

    Article  CAS  PubMed  Google Scholar 

  119. Mahmoud GS, Sayed SA, Abdelmawla SN, Amer MA. Positive effects of systemic sodium benzoate and olanzapine treatment on activities of daily life, spatial learning and working memory in ketamine-induced rat model of schizophrenia. Int J Physiol Pathophysiol Pharmacol. 2019;11:21–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Zeghib K, Boutlelis DA. Food additive (sodium benzoate)-induced damage on renal function and glomerular cells in rats; modulating effect of aqueous extract of Atriplex halimus L. Iran J Pharm Res IJPR. 2021;20:296–306. https://doi.org/10.22037/ijpr.2020.111634.13272.

    Article  CAS  PubMed  Google Scholar 

  121. Chesapeake biological laboratories, inc. Highlights of prescribing information. [Internet]. U.S. Food and Drug Administration.2011 [cited 2022 Aug 27]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020645s008lbl.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chieh-Hsin Lin or Hsien-Yuan Lane.

Ethics declarations

Funding

This work was supported by National Health Research Institutes, Taiwan (NHRI-EX111-11133NI), Ministry of Science and Technology, Taiwan (109-2314-B-039-039-MY3; MOST 111-2622-B-039-002) and China Medical University Hospital, Taiwan (DMR-111-243, DMR-HHC-111-9).

Conflict of interest

The authors declare no conflict of interest. The sponsors were not involved in the conceptualization of the study; the collection and interpretation of the data; the writing of the article or the decision to submit the article for publication.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

Conceptualization, H-YL and C-HL; writing—original draft preparation, C-YK; writing—review and editing, H-YL and C-HL. All authors have read and agreed to the published version of the manuscript and to be accountable for the work.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, CY., Lin, CH. & Lane, HY. Targeting d-Amino Acid Oxidase (DAAO) for the Treatment of Schizophrenia: Rationale and Current Status of Research. CNS Drugs 36, 1143–1153 (2022). https://doi.org/10.1007/s40263-022-00959-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-022-00959-5

Navigation