Skip to main content
Log in

Antidrug Antibodies Against Biological Treatments for Multiple Sclerosis

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

A Correction to this article was published on 25 July 2022

This article has been updated

Abstract

The development of antidrug antibodies (ADAs) is a major problem in several recombinant protein therapies used in the treatment of multiple sclerosis (MS). The etiology of ADAs is multifaceted. The predisposition for a breakdown of immune tolerance is probably genetically determined, and many factors may contribute to the immunogenicity, including structural properties, formation of aggregates, and presence of contaminants and impurities from the industrial manufacturing process. ADAs may have a neutralizing capacity and can reduce or abrogate the bioactivity and therapeutic efficacy of the drug and cause safety issues. Interferon (IFN)-β was the first drug approved for the treatment of MS, and—although it is generally recognized that neutralizing antibodies (NAbs) appear and potentially have a negative effect on therapeutic efficacy—the use of routine measurements of NAbs and the interpretation of the presence of NAbs has been debated at length. NAbs appear after 9–18 months of therapy in up to 40% of patients treated with IFNβ, and the frequency and titers of NAbs depend on the IFNβ preparation. Although all pivotal clinical trials of approved IFNβ products in MS exhibited a detrimental effect of NAbs after prolonged therapy, some subsequent studies did not observe clinical effects from NAbs, which led to the claim that NAbs did not matter. However, it is now largely agreed that persistently high titers of NAbs indicate an abrogation of the biological response and, hence, an absence of therapeutic efficacy, and this observation should lead to a change of therapy. Low and medium titers are ambiguous, and treatment decisions should be guided by determination of in vivo messenger RNA myxovirus resistance protein A induction after IFNβ administration and clinical disease activity. During treatment with glatiramer acetate, ADAs occur frequently but do not appear to adversely affect treatment efficacy or result in adverse events. ADAs occur in approximately 5% of patients treated with natalizumab within 6 months of therapy, and persistent NAbs are associated with a lack of efficacy and acute infusion-related reactions and should instigate a change of therapy. When using the anti-CD20 monoclonal antibodies ocrelizumab and ofatumumab in the treatment of MS, it is not necessary to test for NAbs as these occur very infrequently. Alemtuzumab is immunogenic, but routine measurements of ADAs are not recommended as the antibodies in the pivotal 2-year trials at the population level did not influence lymphocyte depletion or repopulation, efficacy, or safety. However, in some individuals, NAbs led to poor lymphocyte depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced from Sorensen et al. [5] with permission

Fig. 2

Reproduced from Sorensen [53] with permission. MRI magnetic resonance imaging

Fig. 3

Reproduced from Sorensen [53] with permission. neg negative, pos positive

Fig. 4

Reproduced from Sorensen [125] with permission. MS multiple sclerosis

Fig. 5

Reproduced from Jensen et al. [152] with permission

Similar content being viewed by others

Change history

References

  1. Schellekens H, Casadevall N. Immunogenicity of recombinant human proteins: causes and consequences. J Neurol. 2004;251(Suppl 2):II4–9.

  2. Schellekens H. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat Rev Drug Discov. 2002;1(6):457–62.

    Article  CAS  PubMed  Google Scholar 

  3. Cohen BA, Oger J, Gagnon A, Giovannoni G. The implications of immunogenicity for protein-based multiple sclerosis therapies. J Neurol Sci. 2008;275(1–2):7–17.

    Article  CAS  PubMed  Google Scholar 

  4. Sorensen PS, Ross C, Clemmesen KM, Bendtzen K, Frederiksen JL, Jensen K, et al. Clinical importance of neutralising antibodies against interferon beta in patients with relapsing-remitting multiple sclerosis. Lancet. 2003;362(9391):1184–91.

    Article  CAS  PubMed  Google Scholar 

  5. Sorensen PS. Safety concerns and risk management of multiple sclerosis therapies. Acta Neurol Scand. 2017;136(3):168–86.

    Article  Google Scholar 

  6. Sorensen PS, Koch-Henriksen N, Ross C, Clemmesen KM, Bendtzen K. Appearance and disappearance of neutralizing antibodies during interferon-beta therapy. Neurology. 2005;65(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  7. Sauerborn M, Brinks V, Jiskoot W, Schellekens H. Immunological mechanism underlying the immune response to recombinant human protein therapeutics. Trends Pharmacol Sci. 2010;31(2):53–9.

    Article  CAS  PubMed  Google Scholar 

  8. Ross C, Clemmesen KM, Svenson M, Sorensen PS, Koch-Henriksen N, Skovgaard GL, et al. Immunogenicity of interferon-beta in multiple sclerosis patients: influence of preparation, dosage, dose frequency, and route of administration. Danish Multiple Sclerosis Study Group. Ann Neurol. 2000;48(5):706–12.

    Article  CAS  PubMed  Google Scholar 

  9. Hoffmann S, Cepok S, Grummel V, Lehmann-Horn K, Hackermuller J, Stadler PF, et al. HLA-DRB1*0401 and HLA-DRB1*0408 are strongly associated with the development of antibodies against interferon-beta therapy in multiple sclerosis. AmJ Hum Genet. 2008;83(2):219–27.

    Article  CAS  Google Scholar 

  10. Andlauer TFM, Link J, Martin D, Ryner M, Hermanrud C, Grummel V, et al. Treatment- and population-specific genetic risk factors for anti-drug antibodies against interferon-beta: a GWAS. BMC Med. 2020;18(1):298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hassler S, Bachelet D, Duhaze J, Szely N, Gleizes A, Hacein-Bey Abina S, et al. Clinicogenomic factors of biotherapy immunogenicity in autoimmune disease: a prospective multicohort study of the ABIRISK consortium. PLoS Med. 2020;17(10): e1003348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McKay F, Schibeci S, Heard R, Stewart G, Booth D. Analysis of neutralizing antibodies to therapeutic interferon-beta in multiple sclerosis patients: a comparison of three methods in a large Australasian cohort. J Immunol Methods. 2006;310(1–2):20–9.

    Article  CAS  PubMed  Google Scholar 

  13. Sorensen PS, Lisby S, Grove R, Derosier F, Shackelford S, Havrdova E, et al. Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: a phase II study. Neurology. 2014;2014(82):573–81.

    Article  Google Scholar 

  14. Jensen PE, Sellebjerg F, Sondergaard HB, Sorensen PS. Correlation between anti-interferon-beta binding and neutralizing antibodies in interferon-beta-treated multiple sclerosis patients. Eur J Neurol. 2012;19:1311–7.

    Article  CAS  PubMed  Google Scholar 

  15. Sorensen PS, Ross C, Bendtzen K, Koch-Henriksen N. Neutralising antibodies against interferon beta in multiple sclerosis. Lancet. 2004;363(9403):168–9.

    Article  Google Scholar 

  16. Farrell R, Kapoor R, Leary SM, Rudge P, Thompson AJ, Miller DH, et al. Neutralizing anti-interferon beta antibodies are associated with reduced side effects and delayed impact on efficacy of Interferon-beta. Mult Scler. 2008;14(2):212–8.

    Article  CAS  PubMed  Google Scholar 

  17. Calabresi PA, Giovannoni G, Confavreux C, Galetta SL, Havrdova E, Hutchinson M, et al. The incidence and significance of anti-natalizumab antibodies: results from AFFIRM and SENTINEL. Neurology. 2007;69(14):1391–403.

    Article  CAS  PubMed  Google Scholar 

  18. Duquette P, Girard M, Despault L, Dubois R, Knobler RL, Lublin FD, et al. Interferon beta-1B is effective in relapsing-remitting multiple-sclerosis-clinical-results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology. 1993;43(4):655–61.

    Article  Google Scholar 

  19. Bertolotto A, Malucchi S, Milano E, Castello A, Capobianco M, Mutani R. Interferon beta neutralizing antibodies in multiple sclerosis: neutralizing activity and cross-reactivity with three different preparations. Immunopharmacology. 2000;48(2):95–100.

    Article  CAS  PubMed  Google Scholar 

  20. Khan OA, Dhib-Jalbut SS. Neutralizing antibodies to interferon beta-1a and interferon beta-1b in MS patients are cross-reactive. Neurology. 1998;51(6):1698–702.

    Article  CAS  PubMed  Google Scholar 

  21. Enevold C, Oturai AB, Sorensen PS, Ryder LP, Koch-Henriksen N, Bendtzen K. Polymorphisms of innate pattern recognition receptors, response to interferon-beta and development of neutralizing antibodies in multiple sclerosis patients. Mult Scler. 2010;16(8):942–9.

    Article  CAS  PubMed  Google Scholar 

  22. Buck D, Cepok S, Hoffmann S, Grummel V, Jochim A, Berthele A, et al. Influence of the HLA-DRB1 genotype on antibody development to interferon beta in multiple sclerosis. Arch Neurol. 2011;68(4):480–7.

    Article  PubMed  Google Scholar 

  23. Buck D, Andlauer TF, Igl W, Wicklein EM, Muhlau M, Weber F, et al. Effect of HLA-DRB1 alleles and genetic variants on the development of neutralizing antibodies to interferon beta in the BEYOND and BENEFIT trials. Mult Scler. 2019;25(4):565–73.

    Article  CAS  PubMed  Google Scholar 

  24. Waddington KE, Papadaki A, Coelewij L, Adriani M, Nytrova P, Kubala Havrdova E, et al. Using serum metabolomics to predict development of anti-drug antibodies in multiple sclerosis patients treated with IFNbeta. Front Immunol. 2020;11:1527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hedstrom AK, Ryner M, Fink K, Fogdell-Hahn A, Alfredsson L, Olsson T, et al. Smoking and risk of treatment-induced neutralizing antibodies to interferon beta-1a. Mult Scler. 2014;20(4):445–50.

    Article  PubMed  Google Scholar 

  26. Perini P, Calabrese M, Biasi G, Gallo P. The clinical impact of interferon beta antibodies in relapsing-remitting MS. J Neurol. 2004;251(3):305–9.

    Article  CAS  PubMed  Google Scholar 

  27. Kremenchutzky M. Long-term evolution of anti-INFbeta antibodies in IFNbeta-treated MS patients: the London, Canada, MS Clinic experience. Neurology. 2003;61(9 Suppl 5):S29–30.

    Article  PubMed  Google Scholar 

  28. Pachner A, Narayan K, Price N, Hurd M, Dail D. MxA gene expression analysis as an interferon-beta bioactivity measurement in patients with multiple sclerosis and the identification of antibody-mediated decreased bioactivity. Mol Diagn. 2003;7(1):17–25.

    PubMed  Google Scholar 

  29. Mayr M, Berek K, Deisenhammer F. Evolution of interferon-beta binding antibodies in MS patients may predict development of neutralizing antibodies. Eur J Neurol. 2003;10(4):462–4.

    Article  CAS  PubMed  Google Scholar 

  30. Slavikova M, Schmeisser H, Kontsekova E, Mateicka F, Borecky L, Kontsek P. Incidence of autoantibodies against type I and type II interferons in a cohort of systemic lupus erythematosus patients in Slovakia. J Interferon Cytokine Res. 2003;23(3):143–7.

    Article  CAS  PubMed  Google Scholar 

  31. Monzani F, Meucci G, Caraccio N, Saviozzi M, Casolaro A, Moscato G, et al. Discordant effect of IFN-beta1a therapy on anti-IFN antibodies and thyroid disease development in patients with multiple sclerosis. J Interferon Cytokine Res. 2002;22(7):773–81.

    Article  CAS  PubMed  Google Scholar 

  32. Antonelli G, Simeoni E, Bagnato F, Pozzilli C, Turriziani O, Tesoro R, et al. Further study on the specificity and incidence of neutralizing antibodies to interferon (IFN) in relapsing remitting multiple sclerosis patients treated with IFN beta-1a or IFN beta-1b. J Neurol Sci. 1999;168(2):131–6.

    Article  CAS  PubMed  Google Scholar 

  33. Pungor E Jr, Files JG, Gabe JD, Do LT, Foley WP, Gray JL, et al. A novel bioassay for the determination of neutralizing antibodies to IFN-beta1b. J Interferon Cytokine Res. 1998;18(12):1025–30.

    Article  CAS  PubMed  Google Scholar 

  34. Kivisakk P, Alm GV, Fredrikson S, Link H. Neutralizing and binding anti-interferon-beta (IFN-beta) antibodies. A comparison between IFN-beta-1a and IFN-beta-1b treatment in multiple sclerosis. Eur J Neurol. 2000;7(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  35. Deisenhammer F, Reindl M, Harvey J, Gasse T, Dilitz E, Berger T. Bioavailability of interferon beta 1b in MS patients with and without neutralizing antibodies. Neurology. 1999;52(6):1239–43.

    Article  CAS  PubMed  Google Scholar 

  36. Lawrence N, Oger J, Aziz T, Palace J, Vincent A. A sensitive radioimmunoprecipitation assay for assessing the clinical relevance of antibodies to IFN beta. J Neurol Neurosurg Psychiatry. 2003;74(9):1236–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zang YC, Yang D, Hong J, Tejada-Simon MV, Rivera VM, Zhang JZ. Immunoregulation and blocking antibodies induced by interferon beta treatment in MS. Neurology. 2000;55(3):397–404.

    Article  CAS  PubMed  Google Scholar 

  38. Kageshita T, Yamamoto A, Yamazaki N, Ishihara K, Ono T. Low frequency of neutralizing antibodies against natural interferon-beta during adjuvant therapy for Japanese patients with melanoma. J Dermatol Sci. 1999;19(3):208–12.

    Article  CAS  PubMed  Google Scholar 

  39. Rudick RA, Simonian NA, Alam JA, Campion M, Scaramucci JO, Jones W, et al. Incidence and significance of neutralizing antibodies to interferon beta-1a in multiple sclerosis. Multiple Sclerosis Collaborative Research Group (MSCRG). Neurology. 1998;50(5):1266–72.

    Article  CAS  PubMed  Google Scholar 

  40. Abdul Ahad AK, Galazka AR, Revel M, Biffoni M, Borden EC. Incidence of antibodies to interferon-beta in patients treated with recombinant human interferon-beta 1a from mammalian cells. Cytokines Cell MolTher. 1997;3(1):27–32.

    CAS  Google Scholar 

  41. Fierlbeck G, Schreiner T, Schaber B, Walser A, Rassner G. Neutralizing interferon beta antibodies in melanoma patients treated with recombinant and natural interferon beta. Cancer Immunol Immunother. 1994;39(4):263–8.

    Article  CAS  PubMed  Google Scholar 

  42. Prummer O, Bunjes D, Wiesneth M, Hertenstein B, Arnold R, Porzsolt F, et al. Antibodies to interferon-alpha: a novel type of autoantibody occurring after allogeneic bone marrow transplantation. Bone Marrow Transplant. 1996;17(4):617–23.

    CAS  PubMed  Google Scholar 

  43. Dummer R, Muller W, Nestle F, Wiede J, Dues J, Lechner W, et al. Formation of neutralizing antibodies against natural interferon-beta, but not against recombinant interferon-gamma during adjuvant therapy for high-risk malignant melanoma patients. Cancer. 1991;67(9):2300–4.

    Article  CAS  PubMed  Google Scholar 

  44. Redlich PN, Grossberg SE. Analysis of antigenic domains on natural and recombinant human IFN-beta by the inhibition of biologic activities with monoclonal antibodies. J Immunol. 1989;143(6):1887–93.

    CAS  PubMed  Google Scholar 

  45. Larocca AP, Leung SC, Marcus SG, Colby CB, Borden EC. Evaluation of neutralizing antibodies in patients treated with recombinant interferon-beta ser. J Interferon Res. 1989;9(Suppl 1):S51–60.

    PubMed  Google Scholar 

  46. Kob M, Harvey J, Schautzer F, Kascha S, Bibl D, Egg R, et al. A novel and rapid assay for the detection of neutralizing antibodies against interferon-beta. Mult Scler. 2003;9(1):32–5.

    Article  CAS  PubMed  Google Scholar 

  47. Bertolotto A, Gilli F, Sala A, Capobianco M, Malucchi S, Milano E, et al. Persistent neutralizing antibodies abolish the interferon beta bioavailability in MS patients. Neurology. 2003;60(4):634–9.

    Article  CAS  PubMed  Google Scholar 

  48. Polman C, Kappos L, White R, Dahlke F, Beckmann K, Pozzilli C, et al. Neutralizing antibodies during treatment of secondary progressive MS with interferon beta-1b. Neurology. 2003;60(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  49. Vallittu AM, Eralinna JP, Ilonen J, Salmi AA, Waris M. MxA protein assay for optimal monitoring of IFN-beta bioactivity in the treatment of MS patients. Acta Neurol Scand. 2008;118:12–7.

    Article  CAS  PubMed  Google Scholar 

  50. Grossberg SE, Kawade Y, Grossberg LD. The neutralization of interferons by antibody III. The constant antibody bioassay, a highly sensitive quantitative detector of low antibody levels. J Interferon Cytokine Res. 2009;29:93–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grossberg SE, Kawade Y, Kohase M, Klein JP. The neutralization of interferons by antibody. II. Neutralizing antibody unitage and its relationship to bioassay sensitivity: the tenfold reduction unit. J Interferon Cytokine Res. 2001;21(9):743–55.

    Article  CAS  PubMed  Google Scholar 

  52. Herndon RM, Rudick RA, Munschauer FE III, Mass MK, Salazar AM, Coats ME, et al. Eight-year immunogenicity and safety of interferon beta-1a-Avonex treatment in patients with multiple sclerosis. Mult Scler. 2005;11(4):409–19.

    Article  CAS  PubMed  Google Scholar 

  53. Sorensen PS. Neutralizing antibodies against interferon-Beta. Ther Adv Neurol Disord. 2008;1(2):62–78.

    PubMed Central  Google Scholar 

  54. Link J, Ramanujam R, Auer M, Ryner M, Hassler S, Bachelet D, et al. Clinical practice of analysis of anti-drug antibodies against interferon beta and natalizumab in multiple sclerosis patients in Europe: a descriptive study of test results. PLoS ONE. 2017;12(2): e0170395.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lam R, Farrell R, Aziz T, Gibbs E, Giovannoni G, Grossberg SE, et al. Validating parameters of a luciferase reporter gene assay to measure neutralizing antibodies to IFN[beta] in multiple sclerosis patients. J Immunol Methods. 2008;336(2):113–8.

    Article  CAS  PubMed  Google Scholar 

  56. Farrell R, Espasandin M, Lakdawala N, Creeke P, Worthington V, Giovannoni G. Incorporation of an interferon-beta neutralizing antibody assay into routine clinical practice. Mult Scler. 2011;17(11):1333–40.

    Article  CAS  PubMed  Google Scholar 

  57. Farrell RA, Giovannoni G. Measuring and management of anti-interferon beta antibodies in subjects with multiple sclerosis. Mult Scler. 2007;13(5):567–77.

    Article  CAS  PubMed  Google Scholar 

  58. Sominanda A, Lundkvist M, Fogdell-Hahn A, Hemmer B, Hartung HP, Hillert J, et al. Inhibition of endogenous interferon beta by neutralizing antibodies against recombinant interferon beta. Arch Neurol. 2010;67(9):1095–101.

    Article  PubMed  Google Scholar 

  59. Hermanrud C, Ryner M, Luft T, Jensen PE, Ingenhoven K, Rat D, et al. Development and validation of cell-based luciferase reporter gene assays for measuring neutralizing anti-drug antibodies against interferon beta. J Immunol Methods. 2016;430:1–9.

    Article  CAS  PubMed  Google Scholar 

  60. Bellomi F, Bramanti P, Trojano M, Scagnolari C, Muto A, Sessa E, et al. Neutralizing and binding antibodies to interferon beta in patients with multiple sclerosis: a comparison of assay results from three italian centres. J Immunoassay Immunochem. 2009;30(1):40–50.

    Article  CAS  PubMed  Google Scholar 

  61. Hesse D, Sellebjerg F, Sorensen PS. Absence of MxA induction by interferon beta in patients with MS reflects complete loss of bioactivity. Neurology. 2009;73(5):372–7.

    Article  CAS  PubMed  Google Scholar 

  62. Deisenhammer F, Reindl M, Berger T. Immunoglobulin subclasses in patients with neutralizing and nonneutralizing antibodies against IFN-beta1b. J Interferon Cytokine Res. 2001;21(3):167–71.

    Article  CAS  PubMed  Google Scholar 

  63. Ross C, Svenson M, Clemmesen KM, Sorensen PS, Koch-Henriksen N, Bendtzen K. Measuring and evaluating interferon-beta-induced antibodies in patients with multiple sclerosis. Mult Scler. 2006;2006(12):39–46.

    Article  Google Scholar 

  64. Gneiss C, Brugger M, Millonig A, Fogdell-Hahn A, Rudzki D, Hillert J, et al. Comparative study of four different assays for the detection of binding antibodies against interferon-{beta}. Mult Scler. 2008;14(6):830–6.

    Article  CAS  PubMed  Google Scholar 

  65. Gneiss C, Tripp P, Reichartseder F, Egg R, Ehling R, Lutterotti A, et al. Differing immunogenic potentials of interferon beta preparations in multiple sclerosis patients. Mult Scler. 2006;12(6):731–7.

    Article  CAS  PubMed  Google Scholar 

  66. Hegen H, Millonig A, Bertolotto A, Comabella M, Giovanonni G, Guger M, et al. Early detection of neutralizing antibodies to interferon-beta in multiple sclerosis patients: binding antibodies predict neutralizing antibody development. Mult Scler. 2014;20(5):577–87.

    Article  CAS  PubMed  Google Scholar 

  67. Gneiss C, Tripp P, Ehling R, Khalil M, Lutterotti A, Egg R, et al. Interferon-beta antibodies have a higher affinity in patients with neutralizing antibodies compared to patients with non-neutralizing antibodies. J Neuroimmunol. 2006;174(1–2):174–9.

    Article  CAS  PubMed  Google Scholar 

  68. Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis. European Study Group on interferon beta-1b in secondary progressive MS. Lancet. 1998;352(9139):1491–7.

  69. Jacobs LD, Beck RW, Simon JH, Kinkel RP, Brownscheidle CM, Murray TJ, et al. Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS Study Group. N Engl J Med. 2000;343(13):898–904.

    Article  CAS  PubMed  Google Scholar 

  70. PRISMS Study Group. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. Lancet. 1998;352(9139):1498–504.

    Article  Google Scholar 

  71. SPECTRIMS. Randomized controlled trial of interferon-beta-1a in secondary progressive MS: clinical results. Neurology. 2001;56(11):1496–504.

  72. Giovannoni G, Barbarash O, Casset-Semanaz F, King J, Metz L, Pardo G, et al. Safety and immunogenicity of a new formulation of interferon {beta}-1a (Rebif(R) New Formulation) in a Phase IIIb study in patients with relapsing multiple sclerosis: 96-week results. Mult Scler. 2008;15(2):219–28.

    Article  PubMed  Google Scholar 

  73. Clanet M, Radue EW, Kappos L, Hartung HP, Hohlfeld R, Sandberg-Wollheim M, et al. A randomized, double-blind, dose-comparison study of weekly interferon beta-1a in relapsing MS. Neurology. 2002;59(10):1507–17.

    Article  CAS  PubMed  Google Scholar 

  74. Mikol DD, Barkhof F, Chang P, Coyle PK, Jeffery DR, Schwid SR, et al. Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol. 2008;7(10):903–14.

    Article  CAS  PubMed  Google Scholar 

  75. Panitch H, Miller A, Paty D, Weinshenker B. Interferon beta-1b in secondary progressive MS: results from a 3-year controlled study. Neurology. 2004;63(10):1788–95.

    Article  PubMed  Google Scholar 

  76. Panitch H, Goodin DS, Francis G, Chang P, Coyle PK, O’Connor P, et al. Randomized, comparative study of interferon beta-1a treatment regimens in MS: the EVIDENCE trial. Neurology. 2002;59(10):1496–506.

    Article  CAS  PubMed  Google Scholar 

  77. Durelli L, Verdun E, Barbero P, Bergui M, Versino E, Ghezzi A, et al. Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet. 2002;359(9316):1453–60.

    Article  CAS  PubMed  Google Scholar 

  78. Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM, et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol. 1996;39(3):285–94.

    Article  CAS  PubMed  Google Scholar 

  79. Minagara A, Murray TJ. Efficacy and tolerability of intramuscular interferon beta-1a compared with subcutaneous interferon beta-1a in relapsing MS: results from PROOF. Curr Med Res Opin. 2008;24(4):1049–55.

    Article  PubMed  Google Scholar 

  80. Prince HE, Lape-Nixon M, Audette C, Van HK. Identification of interferon-beta antibodies in a reference laboratory setting: findings for 1144 consecutive sera. J Neuroimmunol. 2007;190(1–2):165–9.

    Article  CAS  PubMed  Google Scholar 

  81. Sominanda A, Rot U, Suoniemi M, Deisenhammer F, Hillert J, Fogdell-Hahn A. Interferon beta preparations for the treatment of multiple sclerosis patients differ in neutralizing antibody seroprevalence and immunogenicity. Mult Scler. 2007;13(2):208–14.

    Article  CAS  PubMed  Google Scholar 

  82. Perini P, Facchinetti A, Bulian P, Massaro AR, Pascalis DD, Bertolotto A, et al. Interferon-beta (INF-beta) antibodies in interferon-beta1a- and interferon-beta1b-treated multiple sclerosis patients. Prevalence, kinetics, cross-reactivity, and factors enhancing interferon-beta immunogenicity in vivo. Eur Cytokine Netw. 2001;12(1):56–61.

    CAS  PubMed  Google Scholar 

  83. Magyari M, Koch-Henriksen N, Laursen B, Sorensen PS. Gender effects on treatment response to interferon-beta in multiple sclerosis. Acta Neurol Scand. 2014;130(6):374–9.

    Article  CAS  PubMed  Google Scholar 

  84. Hegen H, Auer M, Deisenhammer F. Pharmacokinetic considerations in the treatment of multiple sclerosis with interferon-beta. Expert Opin Drug Metab Toxicol. 2015;11(12):1803–19.

    Article  CAS  PubMed  Google Scholar 

  85. Nafissi S, Azimi A, Amini-Harandi A, Salami S, Shahkarami MA, Heshmat R. Comparing efficacy and side effects of a weekly intramuscular biogeneric/biosimilar interferon beta-1a with Avonex in relapsing remitting multiple sclerosis: a double blind randomized clinical trial. Clin Neurol Neurosurg. 2012;114(7):986–9.

    Article  PubMed  Google Scholar 

  86. Shokrollahi Barough M, Ashtari F, Sadat Akhavi M, Asghari N, Mosayebi G, Mirmohammadkhani M, et al. Neutralizing antibody production against Rebif(R) and ReciGen(R) in relapsing-remitting multiple sclerosis (RRMS) patients and its association with patient’s disability. Int Immunopharmacol. 2018;62:109–13.

    Article  CAS  PubMed  Google Scholar 

  87. Govindappa K, Sathish J, Park K, Kirkham J, Pirmohamed M. Development of interferon beta-neutralising antibodies in multiple sclerosis–a systematic review and meta-analysis. Eur J Clin Pharmacol. 2015;71(11):1287–98.

    Article  CAS  PubMed  Google Scholar 

  88. Bachelet D, Hassler S, Mbogning C, Link J, Ryner M, Ramanujam R, et al. Occurrence of anti-drug antibodies against interferon-beta and natalizumab in multiple sclerosis: a collaborative cohort analysis. PLoS ONE. 2016;11(11): e0162752.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kalluri SR, Grummel V, Hracsko Z, Pongratz V, Pernpeintner V, Gasperi C, et al. Interferon-beta specific T cells are associated with the development of neutralizing antibodies in interferon-beta treated multiple sclerosis patients. J Autoimmun. 2018;88:83–90.

    Article  CAS  PubMed  Google Scholar 

  90. Pozzilli C, Antonini G, Bagnato F, Mainero C, Tomassini V, Onesti E, et al. Monthly corticosteroids decrease neutralizing antibodies to IFNbeta1 b: a randomized trial in multiple sclerosis. J Neurol. 2002;249(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  91. Fernandez O, Guerrero M, Mayorga C, Munoz L, Lean A, Luque G, et al. Combination therapy with interferon beta-1b and azathioprine in secondary progressive multiple sclerosis. A two-year pilot study. J Neurol. 2002;249(8):1058–62.

    Article  CAS  PubMed  Google Scholar 

  92. Calabresi PA, Wilterdink JL, Rogg JM, Mills P, Webb A, Whartenby KA. An open-label trial of combination therapy with interferon beta-1a and oral methotrexate in MS. Neurology. 2002;58(2):314–7.

    Article  CAS  PubMed  Google Scholar 

  93. Durelli L, Ricci A. Anti-interferon antibodies in multiple sclerosis. Molecular basis and their impact on clinical efficacy. Front Biosci. 2004;9:2192–204.

    Article  CAS  PubMed  Google Scholar 

  94. Rice GP, Paszner B, Oger J, Lesaux J, Paty D, Ebers G. The evolution of neutralizing antibodies in multiple sclerosis patients treated with interferon beta-1b. Neurology. 1999;52(6):1277–9.

    Article  CAS  PubMed  Google Scholar 

  95. Hartung HP, Freedman MS, Polman CH, Edan G, Kappos L, Miller DH, et al. Interferon {beta}-1b-neutralizing antibodies 5 years after clinically isolated syndrome. Neurology. 2011;77(9):835–43.

    Article  CAS  PubMed  Google Scholar 

  96. Dujmovic I, Hegen H, Paz P, Croze E, Deisenhammer F. Persistency of neutralizing anti-interferon-beta antibodies in patients with multiple sclerosis treated with subcutaneous interferon-beta depends on antibody titers, IgG subclasses, and affinity maturation. J Interferon Cytokine Res. 2017;37(7):317–24.

    Article  CAS  PubMed  Google Scholar 

  97. Hegen H, Schleiser M, Gneiss C, Dipauli F, Ehling R, Kuenz B, et al. Persistency of neutralizing antibodies depends on titer and interferon-beta preparation. Mult Scler. 2012;18:610–5.

    Article  CAS  PubMed  Google Scholar 

  98. Durelli L, Barbero P, Cucci A, Ferrero B, Ricci A, Contessa G, et al. Neutralizing antibodies in multiple sclerosis patients treated with 375 micrograms interferon-beta-1b. Expert Opin Biol Ther. 2009;9(4):387–97.

    Article  CAS  PubMed  Google Scholar 

  99. Petersen B, Bendtzen K, Koch-Henriksen N, Ravnborg M, Ross C, Sorensen PS. Persistence of neutralizing antibodies after discontinuation of IFNbeta therapy in patients with relapsing-remitting multiple sclerosis. Mult Scler. 2006;12(3):247–52.

    Article  PubMed  Google Scholar 

  100. Reske D, Walser A, Haupt WF, Petereit HF. Long-term persisting interferon beta-1b neutralizing antibodies after discontinuation of treatment. Acta Neurol Scand. 2004;109(1):66–70.

    Article  CAS  PubMed  Google Scholar 

  101. van der Voort LF, Gilli F, Bertolotto A, Knol DL, Uitdehaag BM, Polman CH, et al. Clinical effect of neutralizing antibodies to interferon beta that persist long after cessation of therapy for multiple sclerosis. Arch Neurol. 2010;67(4):402–7.

    Article  PubMed  Google Scholar 

  102. Shapiro AM, Jack CS, LaPierre Y, Arbour N, Bar-Or A, Antel JP. Potential for interferon beta-induced serum antibodies in multiple sclerosis to inhibit endogenous interferon-regulated chemokine/cytokine responses within the central nervous system. Arch Neurol. 2006;63(9):1296–9.

    Article  PubMed  Google Scholar 

  103. Dunn N, Fogdell-Hahn A, Hillert J, Spelman T. Long-term consequences of high titer neutralizing antibodies to interferon-beta in multiple sclerosis. Front Immunol. 2020;11: 583560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hesse D, Frederiksen JL, Koch-Henriksen N, Schreiber K, Stenager E, Heltberg A, et al. Methylprednisolone does not restore biological response in multiple sclerosis patients with neutralizing antibodies against interferon-beta. Eur J Neurol. 2009;16(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  105. Ravnborg M, Bendtzen K, Christensen O, Jensen P, Hesse D, Tovey M, et al. Treatment with azathioprine and cyclic methylprednisolone has little or no effect on bioactivity in anti-interferon beta antibody-positive patients with multiple sclerosis. Mult Scler. 2009;15(3):323–8.

    Article  CAS  PubMed  Google Scholar 

  106. Millonig A, Rudzki D, Holzl M, Ehling R, Gneiss C, Kunz B, et al. High-dose intravenous interferon beta in patients with neutralizing antibodies (HINABS): a pilot study. Mult Scler. 2009;15(8):977–83.

    Article  CAS  PubMed  Google Scholar 

  107. Marta M, Baker D, Creeke P, Pryce G, Gnanapavan S, Giovannoni G. Antigen-specific tolerization in human autoimmunity: inhibition of interferon-beta1a anti-drug antibodies in multiple sclerosis: a case report. Mult Scler Relat Disord. 2021;1(56): 103284.

    Article  Google Scholar 

  108. Duquette P, Girard M, Dubois R, Kobler RL, Lublin F, Kelley L, et al. Neutralizing antibodies during treatment of multiple sclerosis with interferon beta-1b: Experience during the first three years. Neurology. 1996;47(4):889–94.

    Article  Google Scholar 

  109. Pachner AR, Bertolotto A, Deisenhammer F. Measurement of MxA mRNA or protein as a biomarker of IFNbeta bioactivity: detection of antibody-mediated decreased bioactivity (ADB). Neurology. 2003;61(9 Suppl 5):S24–6.

    Article  CAS  PubMed  Google Scholar 

  110. Pachner AR, Dail D, Pak E, Narayan K. The importance of measuring IFNbeta bioactivity: monitoring in MS patients and the effect of anti-IFNbeta antibodies. J Neuroimmunol. 2005;166(1–2):180–8.

    Article  CAS  PubMed  Google Scholar 

  111. Deisenhammer F, Mayringer I, Harvey J, Dilitz E, Gasse T, Stadlbauer D, et al. A comparative study of the relative bioavailability of different interferon beta preparations. Neurology. 2000;54(11):2055–60.

    Article  CAS  PubMed  Google Scholar 

  112. Sellebjerg F, Datta P, Larsen J, Rieneck K, Alsing I, Oturai A, et al. Gene expression analysis of interferon-{beta} treatment in multiple sclerosis. Mult Scler. 2008;14(5):615–21.

    Article  CAS  PubMed  Google Scholar 

  113. Sorensen PS, Tscherning T, Mathiesen HK, Langkilde AR, Ross C, Ravnborg M, et al. Neutralizing antibodies hamper IFNbeta bioactivity and treatment effect on MRI in patients with MS. Neurology. 2006;67(9):1681–3.

    Article  PubMed  Google Scholar 

  114. Wandinger KP, Lunemann JD, Wengert O, Bellmann-Strobl J, Aktas O, Weber A, et al. TNF-related apoptosis inducing ligand (TRAIL) as a potential response marker for interferon-beta treatment in multiple sclerosis. Lancet. 2003;361(9374):2036–43.

    Article  CAS  PubMed  Google Scholar 

  115. Sellebjerg F, Krakauer M, Hesse D, Ryder LP, Alsing I, Jensen PE, et al. Identification of new sensitive biomarkers for the in vivo response to interferon-beta treatment in multiple sclerosis using DNA-array evaluation. Eur J Neurol. 2009;16:1291–8.

    Article  CAS  PubMed  Google Scholar 

  116. Pachner AR, Warth JD, Pace A, Goelz S. Effect of neutralizing antibodies on biomarker responses to interferon beta: the INSIGHT study. Neurology. 2009;73(18):1493–500.

    Article  CAS  PubMed  Google Scholar 

  117. Francis GS, Rice GP, Alsop JC. Interferon beta-1a in MS: results following development of neutralizing antibodies in PRISMS. Neurology. 2005;65(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  118. Kappos L, Clanet M, Sandberg-Wollheim M, Radue EW, Hartung HP, Hohlfeld R, et al. Neutralizing antibodies and efficacy of interferon beta-1a: a 4-year controlled study. Neurology. 2005;65(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  119. Paolicelli D, D’Onghia M, Pellegrini F, Direnzo V, Iaffaldano P, Lavolpe V, et al. The impact of neutralizing antibodies on the risk of disease worsening in interferon beta-treated relapsing multiple sclerosis: a 5 year post-marketing study. J Neurol. 2013;260(6):1562–8.

    Article  CAS  PubMed  Google Scholar 

  120. Malucchi S, Sala A, Gilli F, Bottero R, Di Sapio A, Capobianco M, et al. Neutralizing antibodies reduce the efficacy of betaIFN during treatment of multiple sclerosis. Neurology. 2004;62(11):2031–7.

    Article  CAS  PubMed  Google Scholar 

  121. Pachner AR, Cadavid D, Wolansky L, Skurnick J. Effect of anti-IFN{beta} antibodies on MRI lesions of MS patients in the BECOME study. Neurology. 2009;73(18):1485–92.

    Article  CAS  PubMed  Google Scholar 

  122. Goodin DS, Hurwitz B, Noronha A. Neutralizing antibodies to interferon beta-1b are not associated with disease worsening in multiple sclerosis. J Int Med Res. 2007;35(2):173–87.

    Article  CAS  PubMed  Google Scholar 

  123. Goodin DS, Hartung HP, O’Connor P, Filippi M, Arnason B, Comi G, et al. Neutralizing antibodies to interferon beta-1b multiple sclerosis: a clinico-radiographic paradox in the BEYOND trial. Mult Scler. 2012;18(2):181–95.

    Article  CAS  PubMed  Google Scholar 

  124. Sorensen PS. Effects of neutralizing antibodies to interferon beta in multiple sclerosis: a logical paradox. Mult Scler. 2012;18(2):131–2.

    Article  PubMed  Google Scholar 

  125. Sorensen PS. Neutralising antibodies to interferon-beta-measurement, clinical relevance, and management. J Neurol. 2006;253(Suppl 6):vi16–vi22.

  126. Sorensen PS, Koch-Henriksen N, Flachs E, Bendtzen K. Is the treatment effect of IFN-{beta} restored after the disappearance of neutralizing antibodies? Mult Scler. 2008;14(6):837–42.

    Article  CAS  PubMed  Google Scholar 

  127. Hesse D, Sorensen PS. Using measurements of neutralizing antibodies: the challenge of IFN-beta therapy. Eur J Neurol. 2007;14(8):850–9.

    Article  CAS  PubMed  Google Scholar 

  128. Sominanda A, Hillert J, Fogdell-Hahn A. In vivo bioactivity of interferon-beta in multiple sclerosis patients with neutralising antibodies is titre-dependent. J Neurol Neurosurg Psychiatry. 2008;79(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  129. Sorensen PS, Koch-Henriksen N, Bendtzen K. Are ex vivo neutralising antibodies against IFN-{beta} always detrimental to therapeutic efficacy in multiple sclerosis? Mult Scler. 2007;13(5):616–21.

    Article  CAS  PubMed  Google Scholar 

  130. Group PS. PRISMS-4: Long-term efficacy of interferon-beta-1a in relapsing MS. Neurology. 2001;56(12):1628–36.

  131. Sorensen PS. Management of patients with neutralizing antibodies against interferon-beta: stop IFN-beta therapy or wait for the antibodies to go away? Eur J Neurol. 2009;16(1):1–2.

    Article  CAS  PubMed  Google Scholar 

  132. Sørensen PS, Deisenhammer F, Duda P, Hohlfeld R, Myhr KM, Palace J, Polman C, Pozzilli C, Ross C; EFNS Task Force on Anti-IFN-beta Antibodies in Multiple Sclerosis. Guidelines on use of anti-interferon-beta antibody measurements in multiple sclerosis—report of an EFNS Task Force on IFN-beta antibodies in multiple sclerosis. Eur J Neurol. 2005;12(11):817–27.

  133. Goodin DS, Frohman EM, Hurwitz B, O’Connor PW, Oger JJ, Reder AT, et al. Neutralizing antibodies to interferon beta: assessment of their clinical and radiographic impact: an evidence report: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2007;68(13):977–84.

    Article  CAS  PubMed  Google Scholar 

  134. Sorensen PS, Bertolotto A. Re: neutralizing antibodies to interferon beta: assessment of their clinical and radiographic impact: an evidence report: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2007;69(15):1552.

    Article  PubMed  Google Scholar 

  135. Polman CH, Bertolotto A, Deisenhammer F, Giovannoni G, Hartung HP, Hemmer B, et al. Recommendations for clinical use of data on neutralising antibodies to interferon-beta therapy in multiple sclerosis. Lancet Neurol. 2010;9(7):740–50.

    Article  CAS  PubMed  Google Scholar 

  136. Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group [see comments]. Neurology. 1995;1995(45):1268–76.

    Article  Google Scholar 

  137. Brenner T, Arnon R, Sela M, Abramsky O, Meiner Z, Riven-Kreitman R, et al. Humoral and cellular immune responses to Copolymer 1 in multiple sclerosis patients treated with Copaxone. J Neuroimmunol. 2001;115(1–2):152–60.

    Article  CAS  PubMed  Google Scholar 

  138. Salama HH, Hong J, Zang YC, El Mongui A, Zhang J. Blocking effects of serum reactive antibodies induced by glatiramer acetate treatment in multiple sclerosis. Brain. 2003;126(12):2638–47.

    Article  PubMed  Google Scholar 

  139. Teitelbaum D, Brenner T, Abramsky O, Aharoni R, Sela M, Arnon R. Antibodies to glatiramer acetate do not interfere with its biological functions and therapeutic efficacy. Mult Scler. 2003;9(6):592–9.

    Article  CAS  PubMed  Google Scholar 

  140. Basile E, Gibbs E, Aziz T, Oger J. During 3 years treatment of primary progressive multiple sclerosis with glatiramer acetate, specific antibodies switch from IgG1 to IgG4. J Neuroimmunol. 2006;177(1–2):161–6.

    Article  CAS  PubMed  Google Scholar 

  141. Karussis D, Teitelbaum D, Sicsic C, Brenner T. Long-term treatment of multiple sclerosis with glatiramer acetate: natural history of the subtypes of anti-glatiramer acetate antibodies and their correlation with clinical efficacy. J Neuroimmunol. 2010;220(1–2):125–30.

    Article  CAS  PubMed  Google Scholar 

  142. Avila S, Guerrero-Garcia JJ, Becerril-Villanueva E, Perez-Sanchez G, Pavon L, Rojas-Mayorquin AE, et al. A differential sex-specific pattern of IgG2 and IgG4 subclasses of anti-drug antibodies (ADAs) induced by glatiramer acetate in relapsing-remitting multiple sclerosis patients. Mult Scler Relat Disord. 2019;34:92–9.

    Article  PubMed  Google Scholar 

  143. Selmaj K, Barkhof F, Belova AN, Wolf C, van den Tweel ER, Oberye JJ, et al. Switching from branded to generic glatiramer acetate: 15-month GATE trial extension results. Mult Scler. 2017;23(14):1909–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):899–910.

    Article  CAS  PubMed  Google Scholar 

  145. Rudick RA, Stuart WH, Calabresi PA, Confavreux C, Galetta SL, Radue EW, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):911–23.

    Article  CAS  PubMed  Google Scholar 

  146. Sorensen PS, Hyldgaard Jensen PE, Haghikia A, Lundkvist M, Vedeler C, Sellebjerg F, et al. Occurrence of antibodies against natalizumab in relapsing multiple sclerosis patients treated with natalizumab. Mult Scler. 2011;17(9):1074–8.

    Article  PubMed  Google Scholar 

  147. Sangalli F, Moiola L, Bucello S, Annovazzi P, Rizzo A, Radaelli M, et al. Efficacy and tolerability of natalizumab in relapsing-remitting multiple sclerosis patients: a post-marketing observational study. Neurol Sci. 2010;31(Suppl 3):299–302.

    Google Scholar 

  148. Putzki N, Yaldizli O, Buhler R, Schwegler G, Curtius D, Tettenborn B. Natalizumab reduces clinical and MRI activity in multiple sclerosis patients with high disease activity: results from a multicenter study in Switzerland. Eur Neurol. 2010;63(2):101–6.

    Article  CAS  PubMed  Google Scholar 

  149. Hedstrom AK, Alfredsson L, Lundkvist Ryner M, Fogdell-Hahn A, Hillert J, Olsson T. Smokers run increased risk of developing anti-natalizumab antibodies. Mult Scler. 2014;20(8):1081–5.

    Article  CAS  PubMed  Google Scholar 

  150. Sorensen PS, Koch-Henriksen N, Jensen PE. Neutralizing antibodies against interferon-{beta} do not predispose antibodies against natalizumab. Neurology. 2011;76(8):759–60.

    Article  PubMed  Google Scholar 

  151. Trojano M, Ramio-Torrenta L, Grimaldi LM, Lubetzki C, Schippling S, Evans KC, et al. A randomized study of natalizumab dosing regimens for relapsing-remitting multiple sclerosis. Mult Scler. 2021;27(14):2240–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jensen PE, Koch-Henriksen N, Sellebjerg F, Sorensen PS. Prediction of antibody persistency from antibody titres to natalizumab. Mult Scler. 2012;18(10):1493–9.

    Article  PubMed  Google Scholar 

  153. Hellwig K, Schimrigk S, Fischer M, Haghikia A, Muller T, Chan A, et al. Allergic and nonallergic delayed infusion reactions during natalizumab therapy. Arch Neurol. 2008;65(5):656–8.

    Article  PubMed  Google Scholar 

  154. Phillips JT, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, et al. Infusion-related hypersensitivity reactions during natalizumab treatment. Neurology. 2006;67(9):1717–8.

    Article  CAS  PubMed  Google Scholar 

  155. Killestein J, Jasperse B, Liedorp M, Seewann A, Polman C. Very late delayed-allergic reaction to natalizumab not associated with neutralizing antibodies. Mult Scler. 2009;15(4):525–6.

    Article  CAS  PubMed  Google Scholar 

  156. Krumbholz M, Pellkofer H, Gold R, Hoffmann LA, Hohlfeld R, Kumpfel T. Delayed allergic reaction to natalizumab associated with early formation of neutralizing antibodies. Arch Neurol. 2007;64(9):1331–3.

    Article  PubMed  Google Scholar 

  157. Blinkenberg M, Soelberg SP. Monoclonal antibodies for relapsing multiple sclerosis: a review of recently marketed and late-stage agents. CNS Drugs. 2017;31(5):357–71.

    Article  CAS  PubMed  Google Scholar 

  158. Salzer J, Svenningsson R, Alping P, Novakova L, Bjorck A, Fink K, et al. Rituximab in multiple sclerosis: A retrospective observational study on safety and efficacy. Neurology. 2016;87(20):2074–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Faustini F, Dunn N, Kharlamova N, Ryner M, Bruchfeld A, Malmstrom V, et al. First exposure to rituximab is associated to high rate of anti-drug antibodies in systemic lupus erythematosus but not in ANCA-associated vasculitis. Arthritis Res Ther. 2021;23(1):211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Strand V, Balsa A, Al-Saleh J, Barile-Fabris L, Horiuchi T, Takeuchi T, et al. Immunogenicity of biologics in chronic inflammatory diseases: a systematic review. BioDrugs. 2017;31(4):299–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–88.

    Article  CAS  PubMed  Google Scholar 

  162. Bar-Or A, Calabresi PA, Arnlod D, Markowitz C, Shafer S, Kasper LH, et al. Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol. 2008;63(3):395–400.

    Article  CAS  PubMed  Google Scholar 

  163. Hawker K, O’Connor P, Freedman MS, Calabresi PA, Antel J, Simon J, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol. 2009;66(4):460–71.

    Article  CAS  PubMed  Google Scholar 

  164. Dunn N, Juto A, Ryner M, Manouchehrinia A, Piccoli L, Fink K, et al. Rituximab in multiple sclerosis: frequency and clinical relevance of anti-drug antibodies. Mult Scler. 2018;24(9):1224–33.

    Article  CAS  PubMed  Google Scholar 

  165. Sorensen PS, Blinkenberg M. The potential role for ocrelizumab in the treatment of multiple sclerosis: current evidence and future prospects. Ther Adv Neurol Disord. 2016;9(1):44–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–34.

    Article  CAS  PubMed  Google Scholar 

  167. Kappos L, Li D, Calabresi PA, O’Connor P, Bar-Or A, Barkhof F, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet. 2011;378(9805):1779–87.

    Article  CAS  PubMed  Google Scholar 

  168. Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209–20.

    Article  CAS  PubMed  Google Scholar 

  169. Hauser SL, Kappos L, Montalban X, Craveiro L, Chognot C, Hughes R, et al. Safety of ocrelizumab in patients with relapsing and primary progressive multiple sclerosis. Neurology. 2021;97(16):e1546–59.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Casertano S, Signoriello E, Rossi F, Di Pietro A, Tuccillo F, Bonavita S, et al. Ocrelizumab in a case of refractory chronic inflammatory demyelinating polyneuropathy with anti-rituximab antibodies. Eur J Neurol. 2020;27(12):2673–5.

    Article  CAS  PubMed  Google Scholar 

  171. Hauser SL, Bar-Or A, Cohen JA, Comi G, Correale J, Coyle PK, et al. Ofatumumab versus teriflunomide in multiple sclerosis. N Engl J Med. 2020;383(6):546–57.

    Article  CAS  PubMed  Google Scholar 

  172. Bar-Or A, Grove RA, Austin DJ, Tolson JM, VanMeter SA, Lewis EW, et al. Subcutaneous ofatumumab in patients with relapsing-remitting multiple sclerosis: the MIRROR study. Neurology. 2018;90(20):e1805–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1829–39.

    Article  CAS  PubMed  Google Scholar 

  174. Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1819–28.

    Article  CAS  PubMed  Google Scholar 

  175. Coles AJ, Compston DA, Selmaj KW, Lake SL, Moran S, Margolin DH, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359(17):1786–801.

    Article  PubMed  Google Scholar 

  176. Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature. 1988;332(6162):323–7.

    Article  CAS  PubMed  Google Scholar 

  177. Baker D, Herrod SS, Alvarez-Gonzalez C, Giovannoni G, Schmierer K. Interpreting lymphocyte reconstitution data from the pivotal phase 3 trials of alemtuzumab. JAMA Neurol. 2017;74(8):961–9.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Baker D, Ali L, Saxena G, Pryce G, Jones M, Schmierer K, et al. The irony of humanization: alemtuzumab, the first, but one of the most immunogenic, humanized monoclonal antibodies. Front Immunol. 2020;11:124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Dubuisson N, Baker D, Kang AS, Pryce G, Marta M, Visser LH, et al. Alemtuzumab depletion failure can occur in multiple sclerosis. Immunology. 2018;154(2):253–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Saxena G, Moore JM, Jones M, Pryce G, Ali L, Leisegang GR, et al. Detecting and predicting neutralization of alemtuzumab responses in MS. Neurol Neuroimmunol Neuroinflamm. 2020;7(4):e767.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Holgate RG, Weldon R, Jones TD, Baker MP. Characterisation of a novel anti-CD52 antibody with improved efficacy and reduced immunogenicity. PLoS ONE. 2015;10(9): e0138123.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Soelberg Sorensen.

Ethics declarations

Funding

No funding was received.

Conflict of interest

Per Soelberg Sorensen has received personal compensation for serving on scientific advisory boards, steering committees, and independent data monitoring committees and has received speaker honoraria from Biogen, Merck, Novartis, TEVA, and Celgene/BMS.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

All references are indexed in PubMed.

Code availability

Not applicable.

Author contributions

The author was the sole contributor to this review article and agrees to be accountable for the work.

Additional information

The original online version of this article was revised: Ofatumumab is a fully human anti-CD20 monoclonal antibody and the B-cell-depleting drug most recently approved for the treatment of RRMS. It is administered subcutaneously at a dose of 20 mg every 4 weeks.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorensen, P.S. Antidrug Antibodies Against Biological Treatments for Multiple Sclerosis. CNS Drugs 36, 569–589 (2022). https://doi.org/10.1007/s40263-022-00920-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-022-00920-6

Navigation