Skip to main content
Log in

Revisiting the Pharmacology of Unfractionated Heparin

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Unfractionated heparin (UFH) is a commonly used anticoagulant therapy for the acute treatment and prevention of thrombosis. Its short duration of action, reversibility of effect by protamine sulfate, and extensive clinical experience are some of the advantages that support its use. However, the choice of dose and dosing regimen of UFH remains challenging for several reasons. First, UFH has a narrow therapeutic window and wide variability in the dose–response relationship. Second, its pharmacodynamic (PD) properties are difficult to characterise owing to the complex multidimensional mechanisms of interaction with the haemostatic system. Third, the complex heterogeneous chemical composition of UFH precludes precise characterisation of its pharmacokinetic (PK) properties. This review provides a comprehensive mechanistic approach to the interaction of UFH with the haemostatic system. The effect of chemical structure on its PK and PD properties is quantitatively described, and a framework for characterisation of the dose–response relationship of UFH for the purpose of dose optimisation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jacqmin P, Snoeck E, van Schaick EA, Gieschke R, Pillai P, Steimer J-L, et al. Modelling response time profiles in the absence of drug concentrations: definition and performance evaluation of the K-PD model. J Pharmacokinet Pharmacodyn. 2007;34(1):57–85.

    Article  CAS  PubMed  Google Scholar 

  2. Gabrielsson J, Jusko WJ, Alari L. Modeling of dose-response-time data: four examples of estimating the turnover parameters and generating kinetic functions from response profiles. Biopharm Drug Dispos. 2000;21(2):41–52.

    Article  CAS  PubMed  Google Scholar 

  3. Duffull SB. Is the ideal anticoagulant a myth? Expert Rev Clin Pharmacol. 2012;5(3):231–6.

    Article  CAS  PubMed  Google Scholar 

  4. Al-Sallami H, Newall F, Monagle P, Ignjatovic V, Cranswick N, Duffull S. Development of a population pharmacokinetic–pharmacodynamic model of a single bolus dose of unfractionated heparin in paediatric patients. Br J Clin Pharmacol. 2016;82(1):178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jia Z, Tian G, Ren Y, Sun Z, Lu W, Hou X. Pharmacokinetic model of unfractionated heparin during and after cardiopulmonary bypass in cardiac surgery. J Transl Med. 2015;13(1):45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Delavenne X, Ollier E, Chollet S, Sandri F, Lanoiselée J, Hodin S, et al. Pharmacokinetic/pharmacodynamic model for unfractionated heparin dosing during cardiopulmonary bypass. Br J Anaesth. 2017;118(5):705–12.

    Article  CAS  PubMed  Google Scholar 

  7. Brunet P, Simon N, Opris A, Faure V, Lorec-Penet AM, Portugal H, et al. Pharmacodynamics of unfractionated heparin during and after a hemodialysis session. Am J Kidney Dis. 2008;51(5):789–95.

    Article  CAS  PubMed  Google Scholar 

  8. Bonate PL. The art of modeling. Pharmacokinetic–pharmacodynamic modeling and simulation. Boston: Springer US; 2011. p. 1–60.

    Book  Google Scholar 

  9. Wajima T, Isbister GK, Duffull SB. A comprehensive model for the humoral coagulation network in humans. Clin Pharmacol Ther. 2009;86(3):290–8.

    Article  CAS  PubMed  Google Scholar 

  10. Hoffman MM, Monroe DM. Rethinking the coagulation cascade. Curr Hematol Rep. 2005;4(5):391–6.

    CAS  PubMed  Google Scholar 

  11. Rosenberg RD. Role of heparin and heparinlike molecules in thrombosis and atherosclerosis. Fed Proc. 1985;44(2):404–9.

    CAS  PubMed  Google Scholar 

  12. Morawitz P. Die Chemie der Blutgerinnung. Ergebnisse der Physiologie. 1905;4(1):307–422.

    Article  Google Scholar 

  13. Brinkhous KM, Smith HP, Warner ED, Seegers WH. The inhibition of blood clotting: an unidentified substance which acts in conjunction with heparin to prevent the conversion of prothrombin into thrombin. Am J Physiol Legacy Content. 1939;125(4):683–7.

    Article  CAS  Google Scholar 

  14. Gerendas M. Inactivation of thrombin. Nature. 1946;157:837.

    Article  CAS  PubMed  Google Scholar 

  15. Gerendas M. Inactivation and stabilization of thrombin. Hung Acta Physiol. 1948;1(4–5):97–115.

    CAS  PubMed  Google Scholar 

  16. Owen WG. Evidence for the formation of an ester between thrombin and heparin cofactor. Biochim Biophys Acta (BBA) Protein Struct. 1975;405(2):380–7.

    Article  CAS  Google Scholar 

  17. Carlson TH. Clearance of thrombin in vivo: significance of alternative pathways. Mol Cell Biochem. 1986;71(2):97–105.

    Article  CAS  PubMed  Google Scholar 

  18. Bock SC. Antithrombin and the Serpin Family. In: Marder VJA, Bennett WC, Schulman JS, White S, Gilbert C, editors. Hemostasis and thrombosis: basic principles and clinical practice. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2013. p. 286–99.

    Google Scholar 

  19. Jesty J. The kinetics of inhibition of thrombin by antithrombin in the presence of components of the hemostatic system. Blood. 1985;66(5):1189–95.

    CAS  PubMed  Google Scholar 

  20. Maaroufi RM, Jozefowicz M, Tapon-Bretaudière J, Fischer A-M. Mechanism of thrombin inhibition by antithrombin and heparin cofactor II in the presence of heparin. Biomaterials. 1997;18(3):203–11.

    Article  CAS  PubMed  Google Scholar 

  21. Downing MR, Bloom JW, Mann KG. Comparison of the inhibition of thrombin by three plasma protease inhibitors. Biochemistry. 1978;17(13):2649–53.

    Article  CAS  PubMed  Google Scholar 

  22. Olson ST, Bjork I, Sheffer R, Craig PA, Shore JD, Choay J. Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement. J Biol Chem. 1992;267(18):12528–38.

    CAS  PubMed  Google Scholar 

  23. Jesty J. Measurement of the kinetics of inhibition of activated coagulation factor X in human plasma: The effect of plasma and inhibitor concentration. Anal Biochem. 1986;152(2):402–11.

    Article  CAS  PubMed  Google Scholar 

  24. Jordan RE, Oosta GM, Gardner WT, Rosenberg RD. The kinetics of hemostatic enzyme-antithrombin interactions in the presence of low molecular weight heparin. J Biol Chem. 1980;255(21):10081–90.

    CAS  PubMed  Google Scholar 

  25. Scott CF, Schapira M, James HL, Cohen AB, Colman RW. Inactivation of factor XIa by plasma protease inhibitors: predominant role of alpha 1-protease inhibitor and protective effect of high molecular weight kininogen. J Clin Investig. 1982;69(4):844–52.

    Article  CAS  PubMed  Google Scholar 

  26. Pixley R, Schapira M, Colman R. Effect of heparin on the inactivation rate of human activated factor XII by antithrombin III. Blood. 1985;66(1):198–203.

    CAS  PubMed  Google Scholar 

  27. Conard J, Brosstad F, Lie Larsen M, Samama M, Abildgaard U. Molar antithrombin concentration in normal human plasma. Haemostasis. 1983;13(6):363–8.

    CAS  PubMed  Google Scholar 

  28. Collen D, Schetz J, de Cock F, Holmer E, Verstraete M. Metabolism of antithrombin III (heparin cofactor) in man: effects of venous thrombosis and of heparin administration. Eur J Clin Investig. 1977;7(1):27–35.

    Article  CAS  Google Scholar 

  29. Andrew M, Paes B, Milner R, Johnston M, Mitchell L, Tollefsen DM, et al. Development of the human coagulation system in the full-term infant. Blood. 1987;70(1):165–72.

    CAS  PubMed  Google Scholar 

  30. Lu W, Mant T, Levy JH, Bailey JM. Pharmacokinetics of recombinant transgenic antithrombin in volunteers. Anesth Analg. 2000;90(3):531–4.

    Article  CAS  PubMed  Google Scholar 

  31. Moffett BS, Diaz R, Galati M, Mahoney D, Teruya J, Yee DL. Population pharmacokinetics of human antithrombin concentrate in paediatric patients. Br J Clin Pharmacol. 2017;83(11):2450–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. DeJongh J, Frieling J, Lowry S, Drenth H-J. Pharmacokinetics of recombinant human antithrombin in delivery and surgery patients with hereditary antithrombin deficiency. Clin Appl Thromb Hemost. 2013;20(4):355–64.

    Article  CAS  PubMed  Google Scholar 

  33. Lam LSL, Regoeczi E, Hatton MWC. In vivo behaviour of some antithrombin III–protease complexes. Br J Exp Pathol. 1979;60(2):151–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Esposito RA, Culliford AT, Colvin SB, Thomas SJ, Lackner H, Spencer FC. Heparin resistance during cardiopulmonary bypass. The role of heparin pretreatment. J Thorac Cardiovasc Surg. 1983;85(3):346–53.

    CAS  PubMed  Google Scholar 

  35. Porter P, Porter MC, Shanberge JN. Heparin cofactor and plasma antithrombin in relation to the mechanism of inactivation of thrombin by heparin. Clin Chim Acta. 1967;17(2):189–200.

    Article  CAS  PubMed  Google Scholar 

  36. Sie P, Dupouy D, Pichon J, Boneu B. Constitutional heparin co-factor II deficiency associated with recurrent thrombosis. Lancet. 1985;2(8452):414–6.

    Article  CAS  PubMed  Google Scholar 

  37. Tran TH, Duckert F. Heparin cofactor II determination–levels in normals and patients with hereditary antithrombin III deficiency and disseminated intravascular coagulation. Thromb Haemost. 1984;52(2):112–6.

    CAS  PubMed  Google Scholar 

  38. Baglin TP, Carrell RW, Church FC, Esmon CT, Huntington JA. Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proc Natl Acad Sci. 2002;99(17):11079–84.

    Article  CAS  PubMed  Google Scholar 

  39. Tovar AMF, de Mattos DA, Stelling MP, Sarcinelli-Luz BSL, Nazareth RA, Mourão PAS. Dermatan sulfate is the predominant antithrombotic glycosaminoglycan in vessel walls: Implications for a possible physiological function of heparin cofactor II. Biochim Biophys Acta (BBA) Mol Basis Dis. 2005;1740(1):45–53.

    Article  CAS  Google Scholar 

  40. Vinazzer H. Heparin cofactor II: structure, function, and clinical importance. In: Sas G, editor. The biology of antithrombins. Boca Raton: CRC Press; 1990. p. 141–55.

    Google Scholar 

  41. O’Keeffe D, Olson ST, Gasiunas N, Gallagher J, Baglin TP, Huntington JA. The heparin binding properties of heparin cofactor II suggest an antithrombin-like activation mechanism. J Biol Chem. 2004;279(48):50267–73.

    Article  CAS  PubMed  Google Scholar 

  42. Sie P, Dupouy D, Pichon J, Boneu B. Turnover study of heparin cofactor II in healthy man. Thromb Haemost. 1985;54(3):635–8.

    Article  CAS  PubMed  Google Scholar 

  43. McLean J. The discovery of heparin. Circulation. 1959;19(1):75–8.

    Article  CAS  PubMed  Google Scholar 

  44. Oduah EI, Linhardt RJ, Sharfstein ST. Heparin: past, present, and future. Pharmaceuticals (Basel). 2016;9(3):38.

    Article  CAS  Google Scholar 

  45. Nader HB, Chavante SF, dos-Santos EA, Oliveira TW, de-Paiva JF, Jeronimo SM, et al. Heparan sulfates and heparins: similar compounds performing the same functions in vertebrates and invertebrates? Braz J Med Biol Res. 1999;32(5):529–38.

    Article  CAS  PubMed  Google Scholar 

  46. Rodén L, Ananth S, Campbell P, Curenton T, Ekborg G, Manzella S, et al. Heparin—an introduction. In: Lane DA, Björk I, Lindahl U, editors. Heparin and related polysaccharides. Boston: Springer US; 1992. p. 1–20.

    Google Scholar 

  47. Bianchini P, Liverani L, Mascellani G, Parma B. Heterogeneity of unfractionated heparins studied in connection with species, source, and production processes. Semin Thromb Hemost. 1997;23(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  48. Mulloy B, Hogwood J, Gray E. Assays and reference materials for current and future applications of heparins. Biologicals. 2010;38(4):459–66.

    Article  CAS  PubMed  Google Scholar 

  49. Tovar AM, Santos GR, Capille NV, Piquet AA, Glauser BF, Pereira MS, et al. Structural and haemostatic features of pharmaceutical heparins from different animal sources: challenges to define thresholds separating distinct drugs. Sci Rep. 2016;6:35619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rohatgi A. WebPlotDigitizer. 4.1 ed., Austin; 2018.

  51. Hogwood J, Mulloy B, Gray E. Precipitation and neutralization of heparin from different sources by protamine sulfate. Pharmaceuticals (Basel). 2017;10(3):E59.

    Article  CAS  Google Scholar 

  52. Lam LH, Silbert JE, Rosenberg RD. The separation of active and inactive forms of heparin. Biochem Biophys Res Commun. 1976;69(2):570–7.

    Article  CAS  PubMed  Google Scholar 

  53. Hook M, Bjork I, Hopwood J, Lindahl U. Anticoagulant activity of heparin: separation of high-activity and low-activity heparin species by affinity chromatography on immobilized antithrombin. FEBS Lett. 1976;66(1):90–3.

    Article  CAS  PubMed  Google Scholar 

  54. Andersson LO, Barrowcliffe TW, Holmer E, Johnson EA, Sims GE. Anticoagulant properties of heparin fractionated by affinity chromatography on matrix-bound antithrombin iii and by gel filtration. Thromb Res. 1976;9(6):575–83.

    Article  CAS  PubMed  Google Scholar 

  55. Olson ST, Srinivasan KR, Bjork I, Shore JD. Binding of high affinity heparin to antithrombin III. Stopped flow kinetic studies of the binding interaction. J Biol Chem. 1981;256(21):11073–9.

    CAS  PubMed  Google Scholar 

  56. Rosenberg RD, Jordan RE, Favreau LV, Lam LH. Highly active heparin species with multiple binding sites for antithrombin. Biochem Biophys Res Commun. 1979;86(4):1319–24.

    Article  CAS  PubMed  Google Scholar 

  57. Olson ST, Shore JD. Demonstration of a two-step reaction mechanism for inhibition of alpha-thrombin by antithrombin III and identification of the step affected by heparin. J Biol Chem. 1982;257(24):14891–5.

    CAS  PubMed  Google Scholar 

  58. Craig PA, Olson ST, Shore JD. Transient kinetics of heparin-catalyzed protease inactivation by antithrombin III. Characterization of assembly, product formation, and heparin dissociation steps in the factor Xa reaction. J Biol Chem. 1989;264(10):5452–61.

    CAS  PubMed  Google Scholar 

  59. Scott C, Colman R. Factors influencing the acceleration of human factor XIa inactivation by antithrombin III. Blood. 1989;73(7):1873–9.

    CAS  PubMed  Google Scholar 

  60. Jin L, Abrahams JP, Skinner R, Petitou M, Pike RN, Carrell RW. The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci USA. 1997;94(26):14683–8.

    Article  CAS  PubMed  Google Scholar 

  61. Olson ST, Bjork I. Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin–thrombin reaction. Elucidation from salt concentration effects. J Biol Chem. 1991;266(10):6353–64.

    CAS  PubMed  Google Scholar 

  62. Holmer E, Lindahl U, Bäckström G, Thunberg L, Sandberg H, Söderström G, et al. Anticoagulant activities and effects on platelets of a heparin fragment with high affinity for antithrombin. Thromb Res. 1980;18(6):861–9.

    Article  CAS  PubMed  Google Scholar 

  63. Holmer E, Kurachi K, Soderstrom G. The molecular-weight dependence of the rate-enhancing effect of heparin on the inhibition of thrombin, factor Xa, factor IXa, factor XIa, factor XIIa and kallikrein by antithrombin. Biochem J. 1981;193(2):395–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ellis V, Scully MF, Kakkar VV. The relative molecular mass dependence of the anti-factor Xa properties of heparin. Biochem J. 1986;238(2):329–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hoylaerts M, Owen WG, Collen D. Involvement of heparin chain length in the heparin-catalyzed inhibition of thrombin by antithrombin III. J Biol Chem. 1984;259(9):5670–7.

    CAS  PubMed  Google Scholar 

  66. Scully MF, Ellis V, Kakkar VV. Comparison of the molecular mass dependency of heparin stimulation of heparin cofactor II:thrombin interaction to antithrombin III:thrombin interaction. Thromb Res. 1987;46(3):491–502.

    Article  CAS  PubMed  Google Scholar 

  67. Griffith MJ. Kinetics of the heparin-enhanced antithrombin III/thrombin reaction. Evidence for a template model for the mechanism of action of heparin. J Biol Chem. 1982;257(13):7360–5.

    CAS  PubMed  Google Scholar 

  68. Machovich R. Mechanism of action of heparin through thrombin on blood coagulation. Biochim Biophys Acta. 1975;412(1):13–7.

    Article  CAS  PubMed  Google Scholar 

  69. Jordan RE, Oosta GM, Gardner WT, Rosenberg RD. The binding of low molecular weight heparin to hemostatic enzymes. J Biol Chem. 1980;255(21):10073–80.

    CAS  PubMed  Google Scholar 

  70. Jordan RE, Oosta GM, Gardner WT, Rosenberg RD. The kinetics of hemostatic enzyme-antithrombin interactions in the presence of low molecular weight heparin. J Biol Chem. 1980;255(21):10081–90.

    CAS  PubMed  Google Scholar 

  71. Sie P, Petitou M, Lormeau JC, Dupouy D, Boneu B, Choay J. Studies on the structural requirements of heparin for the catalysis of thrombin inhibition by heparin cofactor II. Biochim Biophys Acta. 1988;966(2):188–95.

    Article  CAS  PubMed  Google Scholar 

  72. Petitou M, Lormeau JC, Perly B, Berthault P, Bossennec V, Sie P, et al. Is there a unique sequence in heparin for interaction with heparin cofactor II? Structural and biological studies of heparin-derived oligosaccharides. J Biol Chem. 1988;263(18):8685–90.

    CAS  PubMed  Google Scholar 

  73. Sheehan JP, Tollefsen DM, Sadler JE. Heparin cofactor II is regulated allosterically and not primarily by template effects. Studies with mutant thrombins and glycosaminoglycans. J Biol Chem. 1994;269(52):32747–51.

    CAS  PubMed  Google Scholar 

  74. Baglin TP, Carrell RW, Church FC, Esmon CT, Huntington JA. Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proc Natl Acad Sci USA. 2002;99(17):11079–84.

    Article  CAS  PubMed  Google Scholar 

  75. Tollefsen DM, Majerus DW, Blank MK. Heparin cofactor II. Purification and properties of a heparin-dependent inhibitor of thrombin in human plasma. J Biol Chem. 1982;257(5):2162–9.

    CAS  PubMed  Google Scholar 

  76. Monagle P, Berry L, O’Brodovich H, Andrew M, Chan A. Covalent heparin cofactor II-heparin and heparin cofactor II-dermatan sulfate complexes. Characterization of novel anticoagulants. J Biol Chem. 1998;273(50):33566–71.

    Article  CAS  PubMed  Google Scholar 

  77. Abildgaard U, Lindahl AK, Sandset PM. Heparin requires both antithrombin and extrinsic pathway inhibitor for its anticoagulant effect in human blood. Haemostasis. 1991;21(4):254–7.

    CAS  PubMed  Google Scholar 

  78. Hansen JB, Sandset PM, Huseby KR, Huseby NE, Nordoy A. Depletion of intravascular pools of tissue factor pathway inhibitor (TFPI) during repeated or continuous intravenous infusion of heparin in man. Thromb Haemost. 1996;76(5):703–9.

    Article  CAS  PubMed  Google Scholar 

  79. Broze GJ Jr, Warren LA, Novotny WF, Higuchi DA, Girard JJ, Miletich JP. The lipoprotein-associated coagulation inhibitor that inhibits the factor VII-tissue factor complex also inhibits factor Xa: insight into its possible mechanism of action. Blood. 1988;71(2):335–43.

    CAS  PubMed  Google Scholar 

  80. Jesty J, Wun TC, Lorenz A. Kinetics of the inhibition of factor Xa and the tissue factor-factor VIIa complex by the tissue factor pathway inhibitor in the presence and absence of heparin. Biochemistry. 1994;33(42):12686–94.

    Article  CAS  PubMed  Google Scholar 

  81. Hirsh J, Raschke R. Heparin and low-molecular-weight heparin: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest. 2004;126(3 Suppl):188S–203S.

    Article  CAS  PubMed  Google Scholar 

  82. Francis JL, Groce JB. Challenges in variation and responsiveness of unfractionated heparin. Pharmacotherapy. 2004;24(8P2):108S–19S.

    Article  CAS  PubMed  Google Scholar 

  83. Kuhle S, Eulmesekian P, Kavanagh B, Massicotte P, Vegh P, Lau A, et al. Lack of correlation between heparin dose and standard clinical monitoring tests in treatment with unfractionated heparin in critically ill children. Haematologica. 2007;92(4):554–7.

    Article  CAS  PubMed  Google Scholar 

  84. Moynihan K, Johnson K, Straney L, Stocker C, Anderson B, Venugopal P, et al. Coagulation monitoring correlation with heparin dose in pediatric extracorporeal life support. Perfusion. 2017;32(8):675–85.

    Article  PubMed  Google Scholar 

  85. Mann KG, Orfeo T, Butenas S, Undas A, Brummel-Ziedins K. Blood coagulation dynamics in haemostasis. Hamostaseologie. 2009;29(1):7–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Newall F. Protamine titration. Methods Mol Biol. 2013;992:279–87.

    Article  CAS  PubMed  Google Scholar 

  87. Crowther MA, Berry LR, Monagle PT, Chan AK. Mechanisms responsible for the failure of protamine to inactivate low-molecular-weight heparin. Br J Haematol. 2002;116(1):178–86.

    Article  CAS  PubMed  Google Scholar 

  88. Ramamurthy N, Baliga N, Wakefield TW, Andrews PC, Yang VC, Meyerhoff ME. Determination of low-molecular-weight heparins and their binding to protamine and a protamine analog using polyion-sensitive membrane electrodes. Anal Biochem. 1999;266(1):116–24.

    Article  CAS  PubMed  Google Scholar 

  89. Ignjatovic V, Summerhayes R, Gan A, Than J, Chan A, Cochrane A, et al. Monitoring unfractionated heparin (UFH) therapy: which anti factor Xa assay is appropriate? Thromb Res. 2007;120(3):347–51.

    Article  CAS  PubMed  Google Scholar 

  90. Bromfield SM, Barnard A, Posocco P, Fermeglia M, Pricl S, Smith DK. Mallard blue: a high-affinity selective heparin sensor that operates in highly competitive media. J Am Chem Soc. 2013;135(8):2911–4.

    Article  CAS  PubMed  Google Scholar 

  91. Warttinger U, Giese C, Harenberg J, Holmer E, Kramer R. A fluorescent probe assay (Heparin Red) for direct detection of heparins in human plasma. Anal Bioanal Chem. 2016;408(28):8241–51.

    Article  CAS  PubMed  Google Scholar 

  92. Li G, Yang B, Li L, Zhang F, Xue C, Linhardt RJ. Analysis of 3-O-sulfo group-containing heparin tetrasaccharides in heparin by liquid chromatography-mass spectrometry. Anal Biochem. 2014;455:3–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yoshimi Y, Yagisawa Y, Yamaguchi R, Seki M. Blood heparin sensor made from a paste electrode of graphite particles grafted with molecularly imprinted polymer. Sensors Actuators B Chem. 2018;259:455–62.

    Article  CAS  Google Scholar 

  94. Barzu T, Molho P, Tobelem G, Petitou M, Caen J. Binding and endocytosis of heparin by human endothelial cells in culture. Biochim Biophys Acta. 1985;845(2):196–203.

    Article  CAS  PubMed  Google Scholar 

  95. Jaques L, Napke E, Levy S. The metachromatic activity of urine following the injection of heparin. Circ Res. 1953;1(4):321–30.

    Article  CAS  PubMed  Google Scholar 

  96. Bjornsson TD, Wolfram KM, Kitchell BB. Heparin kinetics determined by three assay methods. Clin Pharmacol Ther. 1982;31(1):104–13.

    Article  CAS  PubMed  Google Scholar 

  97. Bjornsson TD, Levy G. Pharmacokinetics of heparin. II. Studies of time dependence in rats. J Pharmacol Exp Ther. 1979;210(2):243–6.

    CAS  PubMed  Google Scholar 

  98. Boneu B, Caranobe C, Sie P. Pharmacokinetics of heparin and low molecular weight heparin. Baillieres Clin Haematol. 1990;3(3):531–44.

    Article  CAS  PubMed  Google Scholar 

  99. McAvoy TJ. Pharmacokinetic modeling of heparin and its clinical implications. J Pharmacokinet Biopharm. 1979;7(4):331–54.

    Article  CAS  PubMed  Google Scholar 

  100. Edward Conrad H. Heparin-binding proteins in hemostasis, Chapter 8. In: Edward Conrad H, editor. Heparin-binding proteins. San Diego: Academic Press; 1998. p. 239–300.

    Chapter  Google Scholar 

  101. Young E, Prins M, Levine MN, Hirsh J. Heparin binding to plasma proteins, an important mechanism for heparin resistance. Thromb Haemost. 1992;67(6):639–43.

    Article  CAS  PubMed  Google Scholar 

  102. Lijnen HR, Hoylaerts M, Collen D. Heparin binding properties of human histidine-rich glycoprotein. Mechanism and role in the neutralization of heparin in plasma. J Biol Chem. 1983;258(6):3803–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah Derbalah.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of Interest

Abdallah Derbalah, Stephen Duffull, Fiona Newall, Katie Moynihan, and Hesham Al-Sallami declare that they have no potential conflicts of interest that might be relevant to the contents of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derbalah, A., Duffull, S., Newall, F. et al. Revisiting the Pharmacology of Unfractionated Heparin. Clin Pharmacokinet 58, 1015–1028 (2019). https://doi.org/10.1007/s40262-019-00751-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-019-00751-7

Navigation