Skip to main content
Log in

Clinical Pharmacokinetics and Pharmacodynamics of Panobinostat

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Histone deacetylase (HDAC) inhibitors cause an increase in acetylation that leads to an increase in DNA transcription and accumulation of different proteins, reducing cell proliferation and inducing cell death. Panobinostat is a first-in-line HDAC inhibitor approved for treating multiple myeloma in combination with bortezomib and dexamethasone. It is a pan-deacetylase inhibitor and therefore inhibits not only HDAC but also other deacetylases. The main mechanism of action of panobinostat is to inhibit HDAC, which causes cell cycle arrest and apoptosis, leading to it being an antineoplastic drug. Pooled data of multiple-dose studies show that an oral dose of panobinostat 20 mg resulted in a maximum plasma concentration (C max) of 21.6 ng/mL approximately 1 h after administration, while doses between 10 and 30 mg resulted in dose proportional plasma levels. The absolute bioavailability of panobinostat is 21.4%, and it is moderately bound to plasma proteins. Renal impairment does not influence the intrinsic pharmacokinetics of panobinostat, however hepatic impairment causes an increase in the plasma concentrations of this drug. Therefore, starting treatment at lower doses could be considered in patients with mild to moderate hepatic impairment. Different ethnic backgrounds have an influence on the pharmacokinetics of panobinostat; however, due to major interindividual variability, no dose adjustment is recommended. The area under the concentration–time curve of panobinostat changes significantly under cytochrome P450 (CYP) 3A4 inhibitors, CYP3A4 and CYP2D6 inducers, and P-glycoprotein inhibitors. Panobinostat itself is a CYP2D6 inhibitor, which influences the plasma levels of the CYP2D6 substrate dexamethasone. The main side effects of panobinostat are diarrhea, peripheral neuropathy, asthenia and fatigue; hematologic side effects include neutropenia, thrombocytopenia, and lymphocytopenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007;5(10):981–9.

    Article  CAS  PubMed  Google Scholar 

  2. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370(Pt 3):737–49.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mahlknecht U, Hoelzer D. Histone acetylation modifiers in the pathogenesis of malignant disease. Mol Med. 2000;6(8):623–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046–60.

    Article  CAS  PubMed  Google Scholar 

  5. Ocio EM, Vilanova D, Atadja P, Maiso P, Crusoe E, Fernandez-Lazaro D, et al. In vitro and in vivo rationale for the triple combination of panobinostat (LBH589) and dexamethasone with either bortezomib or lenalidomide in multiple myeloma. Haematologica. 2010;95(5):794–803.

    Article  CAS  PubMed  Google Scholar 

  6. Hideshima T, Bradner JE, Wong J, Chauhan D, Richardson P, Schreiber SL, et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA. 2005;102(24):8567–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gray JE, Haura E, Chiappori A, Tanvetyanon T, Williams CC, Pinder-Schenck M, et al. A phase I, pharmacokinetic, and pharmacodynamic study of panobinostat, an HDAC inhibitor, combined with erlotinib in patients with advanced aerodigestive tract tumors. Clin Cancer Res. 2014;20(6):1644–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takhar HS, Singhal N, Gowda R, Penniment M, Takhar P, Brown MP. Phase I study evaluating the safety and efficacy of oral panobinostat in combination with radiotherapy or chemoradiotherapy in patients with inoperable stage III non-small-cell lung cancer. Anticancer Drugs. 2015;26(10):1069–77.

    Article  CAS  PubMed  Google Scholar 

  9. Tan WW, Allred JB, Moreno-Aspitia A, Northfelt DW, Ingle JN, Goetz MP, et al. Phase I study of panobinostat (LBH589) and letrozole in postmenopausal metastatic breast cancer patients. Clin Breast Cancer. 2016;16(2):82–6.

    Article  CAS  PubMed  Google Scholar 

  10. Assouline SE, Nielsen TH, Yu S, Alcaide M, Chong L, MacDonald D, et al. Phase 2 study of panobinostat with or without rituximab in relapsed diffuse large B-cell lymphoma. Blood. 2016;128(2):185–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Committee for Medicinal Products for Human Use (CHMP). Farydak. Assessment report. EMEA/H/C/003725/0000. European Medicines Agency; 2015. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/003725/WC500193300.pdf. Accessed 28 Oct 2016.

  12. Clive S, Woo MM, Nydam T, Kelly L, Squier M, Kagan M. Characterizing the disposition, metabolism, and excretion of an orally active pan-deacetylase inhibitor, panobinostat, via trace radiolabeled 14C material in advanced cancer patients. Cancer Chemother Pharmacol. 2012;70(4):513–22.

    Article  CAS  PubMed  Google Scholar 

  13. Savelieva M, Woo MM, Schran H, Mu S, Nedelman J, Capdeville R. Population pharmacokinetics of intravenous and oral panobinostat in patients with hematologic and solid tumors. Eur J Clin Pharmacol. 2015;71(6):663–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fukutomi A, Hatake K, Matsui K, Sakajiri S, Hirashima T, Tanii H, et al. A phase I study of oral panobinostat (LBH589) in Japanese patients with advanced solid tumors. Invest New Drug. 2012;30(3):1096–106.

    Article  CAS  Google Scholar 

  15. Rathkopf D, Wong BY, Ross RW, Anand A, Tanaka E, Woo MM, et al. A phase I study of oral panobinostat alone and in combination with docetaxel in patients with castration-resistant prostate cancer. Cancer Chemother Pharmacol. 2010;66(1):181–9.

    Article  CAS  PubMed  Google Scholar 

  16. Mu S, Kuroda Y, Shibayama H, Hino M, Tajima T, Corrado C, et al. Panobinostat PK/PD profile in combination with bortezomib and dexamethasone in patients with relapsed and relapsed/refractory multiple myeloma. Eur J Clin Pharmacol. 2016;72(2):153–61.

    Article  CAS  PubMed  Google Scholar 

  17. Morita S, Oizumi S, Minami H, Kitagawa K, Komatsu Y, Fujiwara Y, et al. Phase I dose-escalating study of panobinostat (LBH589) administered intravenously to Japanese patients with advanced solid tumors. Invest New Drug. 2012;30(5):1950–7.

    Article  CAS  Google Scholar 

  18. Sharma S, Beck J, Mita M, Paul S, Woo MM, Squier M, et al. A phase I dose-escalation study of intravenous panobinostat in patients with lymphoma and solid tumors. Invest New Drug. 2013;31(4):974–85.

    Article  CAS  Google Scholar 

  19. Slingerland M, Hess D, Clive S, Sharma S, Sandstrom P, Loman N, et al. A phase I, open-label, multicenter study to evaluate the pharmacokinetics and safety of oral panobinostat in patients with advanced solid tumors and various degrees of hepatic function. Cancer Chemother Pharmacol. 2014;74(5):1089–98.

    Article  CAS  PubMed  Google Scholar 

  20. Fredenhagen A, Kittelmann M, Oberer L, Kuhn A, Kuhnol J, Delemonte T, et al. Biocatalytic synthesis and structure elucidation of cyclized metabolites of the deacetylase inhibitor panobinostat (LBH589). Drug Metab Dispos. 2012;40(5):1041–50.

    Article  CAS  PubMed  Google Scholar 

  21. Yadav P, Cook M, Cockwell P. Current trends of renal impairment in multiple myeloma. Kidney Dis (Basel). 2016;1(4):241–57.

    Article  Google Scholar 

  22. Sharma S, Witteveen PO, Lolkema MP, Hess D, Gelderblom H, Hussain SA, et al. A phase I, open-label, multicenter study to evaluate the pharmacokinetics and safety of oral panobinostat in patients with advanced solid tumors and varying degrees of renal function. Cancer Chemother Pharmacol. 2015;75(1):87–95.

    Article  CAS  PubMed  Google Scholar 

  23. Hamberg P, Woo MM, Chen LC, Verweij J, Porro MG, Zhao L, et al. Effect of ketoconazole-mediated CYP3A4 inhibition on clinical pharmacokinetics of panobinostat (LBH589), an orally active histone deacetylase inhibitor. Cancer Chemother Pharmacol. 2011;68(3):805–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. San-Miguel JF, Richardson PG, Gunther A, Sezer O, Siegel D, Blade J, et al. Phase Ib study of panobinostat and bortezomib in relapsed or relapsed and refractory multiple myeloma. J Clin Oncol. 2013;31(29):3696–703.

    Article  CAS  PubMed  Google Scholar 

  25. Indiana University, School of Medicine. Flockhart Table™ [updated 2016]. Available at: http://medicine.iupui.edu/clinpharm/ddis/main-table. Accessed 27 June 2017.

  26. Feld R, Woo MM, Leighl N, Shepherd FA, Beck JT, Zhao L, et al. A clinical investigation of inhibitory effect of panobinostat on CYP2D6 substrate in patients with advanced cancer. Cancer Chemother Pharmacol. 2013;72(4):747–55.

    Article  CAS  PubMed  Google Scholar 

  27. Shapiro GI, Frank R, Dandamudi UB, Hengelage T, Zhao L, Gazi L, et al. The effect of food on the bioavailability of panobinostat, an orally active pan-histone deacetylase inhibitor, in patients with advanced cancer. Cancer Chemother Pharmacol. 2012;69(2):555–62.

    Article  CAS  PubMed  Google Scholar 

  28. San-Miguel JF, Hungria VT, Yoon SS, Beksac M, Dimopoulos MA, Elghandour A, et al. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol. 2014;15(11):1195–206.

    Article  CAS  PubMed  Google Scholar 

  29. San-Miguel JF, Hungria VT, Yoon SS, Beksac M, Dimopoulos MA, Elghandour A, et al. Overall survival of patients with relapsed multiple myeloma treated with panobinostat or placebo plus bortezomib and dexamethasone (the PANORAMA 1 trial): a randomised, placebo-controlled, phase 3 trial. Lancet Haematol. 2016;3(11):e506–15.

    Article  PubMed  Google Scholar 

  30. DeAngelo DJ, Spencer A, Bhalla KN, Prince HM, Fischer T, Kindler T, et al. Phase Ia/II, two-arm, open-label, dose-escalation study of oral panobinostat administered via two dosing schedules in patients with advanced hematologic malignancies. Leukemia. 2013;27(8):1628–36.

    Article  CAS  PubMed  Google Scholar 

  31. Richardson PG, Schlossman RL, Alsina M, Weber DM, Coutre SE, Gasparetto C, et al. PANORAMA 2: panobinostat in combination with bortezomib and dexamethasone in patients with relapsed and bortezomib-refractory myeloma. Blood. 2013;122(14):2331–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathilde Van Veggel.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this review.

Conflict of interest

Mathilde van Veggel owns stock in Novartis. Elsbeth Westerman and Paul Hamberg have no conflicts of interest that are relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Veggel, M., Westerman, E. & Hamberg, P. Clinical Pharmacokinetics and Pharmacodynamics of Panobinostat. Clin Pharmacokinet 57, 21–29 (2018). https://doi.org/10.1007/s40262-017-0565-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-017-0565-x

Navigation