Skip to main content
Log in

Clinical Pharmacokinetics and Mass Balance of Veliparib in Combination with Temozolomide in Subjects with Nonhematologic Malignancies

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Veliparib is an orally active potent poly(ADP-ribose) polymerase (PARP) inhibitor currently in phase III clinical trials in solid tumors. This phase I study evaluated the pharmacokinetics and mass balance of veliparib administered alone and in combination with temozolomide, and assessed any potential pharmacokinetic drug–drug interaction between veliparib and temozolomide.

Methods

This was an open-label, dose-escalation study of veliparib in combination with temozolomide in 42 subjects with nonhematologic malignancies. Veliparib was administered orally at doses ranging from 10 to 80 mg twice daily on days 1–7, and temozolomide was administered orally at 150–200 mg/m2 once daily on days 1–5 of each 28-day cycle. The pharmacokinetics of veliparib, its M8 metabolite, and temozolomide, as well as urinary excretion of unchanged veliparib and its M8 metabolite, were determined.

Results

Mean veliparib maximum observed plasma concentration (C max) and area under the plasma concentration–time curve for the first 6 h postdose (AUC6) values increased dose proportionally in the veliparib 10–80 mg twice-daily dose range. The urinary recovery of veliparib dose as the unchanged parent compound alone and together with the M8 metabolite was 73 ± 18 and 90 ± 22%, respectively, over a 12-h dosing interval on day 6 of Cycle 1. Veliparib and temozolomide pharmacokinetic exposures were not affected when administered together.

Conclusions

Veliparib is a Biopharmaceutical Classification System (BCS) Class 1 compound, with no less than 90% of the dose absorbed and an oral bioavailability of at least 73%. Veliparib is primarily eliminated by renal excretion. Veliparib exhibited linear pharmacokinetics in the 10–80 mg twice-daily dose range. No pharmacokinetic interaction was observed when veliparib and temozolomide were administered together.

Clinical Trial Registration Number: NCT00526617.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. de Murcia G, Ménissier-de Murcia J, Schreiber V. Poly(ADP-ribose) polymerase: molecular biological aspects. BioEssays. 1991;13:455–62.

    Article  PubMed  Google Scholar 

  2. D’Amours D, Desnoyers S, D’Silva I, Poirier GG. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J. 1999;342(Pt 2):249–68.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schreiber V, Amé J-C, Dollé P, Schultz I, Rinaldi B, Fraulob V, et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem. 2002;277:23028–36.

    Article  CAS  PubMed  Google Scholar 

  4. DePinho RA, Polyak K. Cancer chromosomes in crisis. Nat Genet. 2004;36:932–4.

    Article  CAS  PubMed  Google Scholar 

  5. Bouwman P, Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer. 2012;12:587–98.

    Article  CAS  PubMed  Google Scholar 

  6. Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, Bouska JJ, et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res. 2007;13:2728–37.

    Article  CAS  PubMed  Google Scholar 

  7. Murai J, Huang SN, Das BB, Renaud A, Zhang Y, Doroshow JH, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72:5588–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hopkins TA, Shi Y, Rodriguez LE, Solomon LR, Donawho CK, DiGiammarino EL, et al. Mechanistic dissection of PARP1 trapping and the impact on in vivo tolerability and efficacy of PARP inhibitors. Mol Cancer Res. 2015;13:1465–77.

    Article  CAS  PubMed  Google Scholar 

  9. Owonikoko TK, Zhang G, Deng X, Rossi MR, Switchenko JM, Doho GH, et al. Poly (ADP) ribose polymerase enzyme inhibitor, veliparib, potentiates chemotherapy and radiation in vitro and in vivo in small cell lung cancer. Cancer Med. 2014;3:1579–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goodman SN, Zahurak ML, Piantadosi S. Some practical improvements in the continual reassessment method for phase I studies. Stat Med. 1995;14:1149–61.

    Article  CAS  PubMed  Google Scholar 

  11. Piantadosi S, Fisher JD, Grossman S. Practical implementation of a modified continual reassessment method for dose-finding trials. Cancer Chemother Pharmacol. 1998;41:429–36.

    Article  CAS  PubMed  Google Scholar 

  12. Mostafa NM, Chiu Y-L, Rosen LS, Bessudo A, Kovacs X, Giranda VL. A phase 1 study to evaluate effect of food on veliparib pharmacokinetics and relative bioavailability in subjects with solid tumors. Cancer Chemother Pharmacol. 2014;74:583–91.

    Article  CAS  PubMed  Google Scholar 

  13. Temodar [package insert]. Kenilworth, NJ: Schering Corporation; 2005.

  14. Parise RA, Shawaqfeh M, Egorin MJ, Beumer JH. Liquid chromatography-mass spectrometric assay for the quantitation in human plasma of ABT-888, an orally available, small molecule inhibitor of poly(ADP-ribose) polymerase. J Chromatogr B. 2008;872:141–7.

    Article  CAS  Google Scholar 

  15. Penning TD, Zhu G-D, Gandhi VB, Gong J, Liu X, Shi Y, et al. Discovery of the poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J Med Chem. 2009;52:514–23.

    Article  CAS  PubMed  Google Scholar 

  16. Li X, Delzer J, Voorman R, de Morais SM, Lao Y. Disposition and drug-drug interaction potential of veliparib (ABT-888), a novel and potent inhibitor of poly(ADP-ribose) polymerase. Drug Metab Dispos. 2011;39:1161–9.

    Article  CAS  PubMed  Google Scholar 

  17. Kikuchi R, Lao Y, Bow DAJ, Chiou WJ, Andracki ME, Carr RA, et al. Prediction of clinical drug-drug interactions of veliparib (ABT-888) with human renal transporters (OAT1, OAT3, OCT2, MATE1, and MATE2K). J Pharm Sci. 2013;102:4426–32.

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Kim S, Sha X, Wiegand R, Wu J, LoRusso P. Complex disease-, gene-, and drug-drug interactions: impacts of renal function, CYP2D6 phenotype, and OCT2 activity on veliparib pharmacokinetics. Clin Cancer Res. 2014;20:3931–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baker SD, Wirth M, Statkevich P, Reidenberg P, Alton K, Sartorius SE, et al. Absorption, metabolism, and excretion of 14C-temozolomide following oral administration to patients with advanced cancer. Clin Cancer Res. 1999;5:309–17.

    CAS  PubMed  Google Scholar 

  20. LoRusso PM, Li J, Burger A, Heilbrun LK, Sausville EA, Boerner SA, et al. Phase I safety, pharmacokinetic, and pharmacodynamic study of the poly(ADP-ribose) polymerase (PARP) inhibitor veliparib (ABT-888) in combination with irinotecan in patients with advanced solid tumors. Clin Cancer Res. 2016;22:3227–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mizugaki H, Yamamoto N, Nokihara H, Fujiwara Y, Horinouchi H, Kanda S, et al. A phase 1 study evaluating the pharmacokinetics and preliminary efficacy of veliparib (ABT-888) in combination with carboplatin/paclitaxel in Japanese subjects with non-small cell lung cancer (NSCLC). Cancer Chemother Pharmacol. 2015;76:1063–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lynparza(R) [package insert]. Wilmington, DE: AstraZeneca Pharmaceuticals LP; 2014.

  23. Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami I, Elliott R, et al. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res. 2013;19:5003–15.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Z-Y, Wang X, Lu S, Wang J, Agarwal S, Martell R, et al. Biotransformation and disposition of niraparib, an investigational, selective human PARP-1 and PARP-2 antagonist, in vitro. Drug Metab Rev. 2016;48(52):P53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silpa Nuthalapati.

Ethics declarations

Funding

AbbVie Inc. provided financial support for the study and participated in the design, study conduct, analysis and interpretation of data, as well as the writing, review and approval of the manuscript.

Conflict of interest

Silpa Nuthalapati, Wijith Munasinghe, Vincent Giranda, and Hao Xiong are employees of AbbVie Inc. and may hold AbbVie stock or stock options.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuthalapati, S., Munasinghe, W., Giranda, V. et al. Clinical Pharmacokinetics and Mass Balance of Veliparib in Combination with Temozolomide in Subjects with Nonhematologic Malignancies. Clin Pharmacokinet 57, 51–58 (2018). https://doi.org/10.1007/s40262-017-0547-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-017-0547-z

Navigation