Skip to main content
Log in

Effect of Febuxostat, a Xanthine Oxidase Inhibitor, on Cardiovascular Risk in Hyperuricemic Patients with Hypertension: A Prospective, Open-label, Pilot Study

  • Original Research Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Background and Objective

There is growing evidence of an association between high uric acid (UA) levels and cardiovascular disease (CVD). We hypothesized that febuxostat, a xanthine oxidase inhibitor, may be associated with suppressing the renin-angiotensin-aldosterone system (RAAS) and improving renal function in hyperurecemic patients with hypertension.

Methods

We conducted a 6-month prospective study in which we randomized hypertensive hyperuricemic patients to either a febuxostat group (n = 30) or a control group (n = 30). The dose of febuxostat was adjusted to maintain the serum UA level at <6.0 mg/dL.

Results

In the febuxostat group, the plasma renin activity (PRA), plasma aldosterone concentration (PAC), and serum UA level significantly decreased by 33 % (p = 0.0012), 14 % (p = 0.001), and 29 % (p < 0.0001), respectively. The estimated glomerular filtration rate (eGFR) significantly increased by 5.5 % (p = 0.001). Similar changes were not observed in the control group. Furthermore, a significant correlation was observed between the percent changes in the serum UA levels and the percent changes in the PRA (r = 0.277, p = 0.033), PAC (r = 0.310, p = 0.016), serum blood urea nitrogen levels (r = 0.434, p = 0.0005), serum creatinine levels (r = 0.413, p = 0.002), and eGFR (r = −0.474, p = 0.0001).

Conclusions

These results support the hypothesis that febuxostat might not only reduce serum UA levels but also suppress RAAS and improve renal function in hyperuricemic patients with hypertension, possibly leading to prevention of CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goicoechea M, de Vinuesa SG, Verdalles U, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol. 2010;5:1388–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Franse LV, Pahor M, Di Bari M, et al. Serum uric acid, diuretic treatment and risk of cardiovascular events in the Systolic Hypertension in the Elderly Program (SHEP). J Hypertens. 2000;18:1149–54.

    Article  CAS  PubMed  Google Scholar 

  3. Verdecchia P, Schillaci G, Reboldi G, Santeusanio F, Porcellati C, Brunetti P. Relation between serum uric acid and risk of cardiovascular disease in essential hypertension. The PIUMA study. Hypertension. 2000;36:1072–8.

    Article  CAS  PubMed  Google Scholar 

  4. Krishnan E. Hyperuricemia and incident heart failure. Circ Heart Fail. 2009;2:556–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Noman A, Ang DS, Ogston S, Lang CC, Struthers AD. Effect of high-dose allopurinol on exercise in patients with chronic stable angina: a randomised, placebo controlled crossover trial. Lancet. 2010;375:2161–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Collaboration Blood Pressure Lowering Treatment Trialists’, Turnbull F, Neal B, Pfeffer M, et al. Blood pressure-dependent and independent effects of agents that inhibit the renin-angiotensin system. J Hypertens. 2007;25:951–8.

    Article  Google Scholar 

  7. Ripley E. Complementary effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in slowing the progression of chronic kidney disease. Am Heart J. 2009;157:S7–16.

    Article  CAS  PubMed  Google Scholar 

  8. Malik UZ, Hundley NJ, Romero G, Radi R, Freeman BA, Tarpey MM, et al. Febuxostat inhibition of endothelial-bound XO: implications for targeting vascular ROS production. Free Radic Biol Med. 2011;51:179–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ye P, Yang S, Zhang W, et al. Efficacy and tolerability of febuxostat in hyperuricemic patients with or without gout: a systematic review and meta-analysis. Clin Ther. 2013;35:180–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hosoya T, Kimura K, Itoh S, et al. The effect of febuxostat to prevent a further reduction in renal function of patients with hyperuricemia who have never had gout and are complicated by chronic kidney disease stage 3: study protocol for a multicenter randomized controlled study. Trials. 2014;15:26.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Saito I, Saruta T, Kondo K, et al. Serum uric acid and the renin-angiotensin system in hypertension. J Am Geriatr Soc. 1978;26:241–7.

    Article  CAS  PubMed  Google Scholar 

  12. Gruskin AB. The adolescent with essential hypertension. Am J Kidney Dis. 1985;6:86–90.

    Article  CAS  PubMed  Google Scholar 

  13. Yu MA, Sánchez-Lozada LG, Johnson RJ, et al. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens. 2010;28:1234–42.

    PubMed  Google Scholar 

  14. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension:a randomized trial. JAMA. 2008;300:924–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Talaat KM, El-Sheikh AR. The effect of mild hyperuricemia on urinary transforming growth factor beta and the progression of chronic kidney disease. Am J Nephrol. 2007;27:435–40.

    Article  CAS  PubMed  Google Scholar 

  16. Whelton A, Macdonald PA, Zhao L, Hunt B, Gunawardhana L. Renal function in gout: long-term treatment effects of febuxostat. J Clin Rheumatol. 2011;17:7–13.

    Article  PubMed  Google Scholar 

  17. Sanchez-Lozada LG, Tapia E, Santamaria J, Avila-Casado C, Soto V, Nepomuceno T, et al. Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int. 2005;67:237–47.

    Article  PubMed  Google Scholar 

  18. Sanchez-Lozada LG, Tapia E, Avila-Casado C, Soto V, Franco M, Santamaria J, et al. Mild hyperuricemia induces glomerular hypertension in normal rats. Am J Physiol Renal Physiol. 2002;283:F1105–10.

    Article  PubMed  Google Scholar 

  19. Ogihara T, Kikuchi K, Matsuoka H, Japanese Society of Hypertension Committee, et al. The Japanese Society of Hypertension Guidelines for the management of hypertension (JSH 2009). Hypertens Res. 2009;32:3–107.

    Article  CAS  PubMed  Google Scholar 

  20. Høieggen A, Alderman MH, Kjeldsen SE, LIFE Study Group, et al. The impact of serum uric acid on cardiovascular outcomes in the LIFE study. Kidney Int. 2004;65:1041–9.

    Article  PubMed  Google Scholar 

  21. Matsuo S, Imai E, Horio M, Collaborators developing the Japanese equation for estimated GFR, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  CAS  PubMed  Google Scholar 

  22. Mazzali M, Hughes J, Kim YG, et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension. 2001;38:1101–6.

    Article  CAS  PubMed  Google Scholar 

  23. Herlitz LC, D’Agati VD, Markowitz GS. Crystalline nephropathies. Arch Pathol Lab Med. 2012;136:713–20.

    Article  PubMed  Google Scholar 

  24. Chen J, Muntner P, Hamm LL, et al. The metabolic syndrome and chronic kidney disease in US adults. Ann Intern Med. 2004;140:167–74.

    Article  PubMed  Google Scholar 

  25. Soltani Z, Rasheed K, Kapusta DR, et al. Potential role of uric acid in metabolic syndrome, hypertension, kidney injury, and cardiovascular diseases: is it time for reappraisal? Curr Hypertens Rep. 2013;15:175–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sánchez-Lozada LG, Tapia E, Jiménez A, et al. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol. 2007;292:F423–9.

    Article  PubMed  Google Scholar 

  27. Maejima I, Takahashi A, Omori H, et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 2013;32:2336–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359:1811–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Aroor AR, McKarns S, Demarco VG, et al. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metabolism. 2013;62:1543–52.

    Article  CAS  PubMed  Google Scholar 

  30. Mazzali M, Kanellis J, Han L, et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol. 2002;282:F991–7.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang J, Zhang Y, Deng W, et al. Elevated serum uric acid is associated with angiotensinogen in obese patients with untreated hypertension. J Clin Hypertens (Greenwich). 2014;16:569–74.

    Article  CAS  Google Scholar 

  32. Siu YP, Leung KT, Tong MK, Kwan TH. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis. 2006;47:51–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kanbay M, Ozkara A, Selcoki Y, et al. Effect of treatment of hyperuricemia with allopurinol on blood pressure, creatinine clearance, and proteinuria in patients with normal renal functions. Int Urol Nephrol. 2007;39:1227–33.

    Article  CAS  PubMed  Google Scholar 

  34. Alderman MH, Cohen H, Madhavan S, et al. Serum uric acid and cardiovascular events in successfully treated hypertensive patients. Hypertension. 1999;34:144–50.

    Article  CAS  PubMed  Google Scholar 

  35. Cohn JN, Anand IS, Latini R, et al. Valsartan Heart Failure Trial Investigators. Sustained reduction of aldosterone in response to the angiotensin receptor blocker valsartan in patients with chronic heart failure: results from the Valsartan Heart Failure Trial. Circulation. 2003;108:1306–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all patients and investigators involved in these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigemasa Tani.

Ethics declarations

Funding

No funding.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

All patients gave their written informed consent prior to the start of each study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tani, S., Nagao, K. & Hirayama, A. Effect of Febuxostat, a Xanthine Oxidase Inhibitor, on Cardiovascular Risk in Hyperuricemic Patients with Hypertension: A Prospective, Open-label, Pilot Study. Clin Drug Investig 35, 823–831 (2015). https://doi.org/10.1007/s40261-015-0349-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-015-0349-8

Keywords

Navigation