Skip to main content
Log in

The Role of Interleukin-17A in Psoriatic Disease

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

The pathogenic mechanisms of specific immune-mediated inflammatory diseases (IMIDs) are not fully understood, but are thought to involve activated T cells with the release of pro-inflammatory cytokines. Understanding the autoimmune inflammatory pathways has led to the development of biological agents that target specific components of effector immune mechanisms. Despite the availability of many effective drugs, a large proportion of patients with moderate to severe IMID do not receive adequate treatment, and many therapies show decreased efficacy over time. Therefore, there is a need for new therapies. One subset of T helper cells, Th17, and the cytokine interleukin-17 (IL-17) play a central role in the pathophysiology of autoimmune diseases such as psoriasis. IL-17 is involved in the modulation of pro-inflammatory cytokines, haematopoietic growth factors, antimicrobial peptides, chemokines, and molecules involved in tissue remodelling; the inflammatory cascades triggered by Th17 cells and IL-17 itself, when unregulated, can result in widespread inflammation-related damage. Evidence of increased Th17 activity and high levels of IL-17 has been found in psoriasis, as well as other inflammatory conditions, thereby signalling the potential utility of IL-17 as a therapeutic target. Clinical trials investigating IL-17 inhibitors, such as secukinumab, in patients with psoriatic disease have reported no significant safety concerns so far. It is hoped that these agents will improve the long-term prognosis of patients with these debilitating disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Firestein GS, Corr M. Common mechanisms in immune-mediated inflammatory disease. J Rheumatol Suppl. 2005;73:8–13; discussion 29–30.

  2. Weng X, Liu L, Barcellos LF, Allison JE, Herrinton LJ. Clustering of inflammatory bowel disease with immune mediated diseases among members of a northern California-managed care organization. Am J Gastroenterol. 2007;102(7):1429–35. doi:10.1111/j.1572-0241.2007.01215.x.

    Article  PubMed  Google Scholar 

  3. Rosenbaum JT, Russell AS, Guenther LC, El-Gabalawy H. The influence of uveitis on patients with immune-mediated inflammatory disease. J Rheumatol Suppl. 2011;88:26–30. doi:10.3899/jrheum.110907.

    Article  PubMed  Google Scholar 

  4. Ortega C, Fernandez AS, Carrillo JM, Romero P, Molina IJ, Moreno JC, et al. IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. J Leukoc Biol. 2009;86(2):435–43. doi:10.1189/JLB.0109046.

    Article  CAS  PubMed  Google Scholar 

  5. Imboden JB. The immunopathogenesis of rheumatoid arthritis. Annu Rev Pathol. 2009;4:417–34. doi:10.1146/annurev.pathol.4.110807.092254.

    Article  CAS  PubMed  Google Scholar 

  6. Pedraz J, Dauden E, Delgado-Jimenez Y, Garcia-Rio I, Garcia-Diez A. Sequential study on the treatment of moderate-to-severe chronic plaque psoriasis with mycophenolate mofetil and cyclosporin. J Eur Acad Dermatol Venereol. 2006;20(6):702–6. doi:10.1111/j.1468-3083.2006.01577.x.

    Article  CAS  PubMed  Google Scholar 

  7. Kuenzli S, Saurat JH. Retinoids for the treatment of psoriasis: outlook for the future. Curr Opin Investig Drugs. 2001;2(5):625–30.

    CAS  PubMed  Google Scholar 

  8. Kunz M. Current treatment of psoriasis with biologics. Curr Drug Discov Technol. 2009;6(4):231–40.

    Article  CAS  PubMed  Google Scholar 

  9. Clark CM, Kirby B, Morris AD, Davison S, Zaki I, Emerson R, et al. Combination treatment with methotrexate and cyclosporin for severe recalcitrant psoriasis. Br J Dermatol. 1999;141(2):279–82.

    Article  CAS  PubMed  Google Scholar 

  10. Kuijpers AL, van de Kerkhof PC. Risk-benefit assessment of methotrexate in the treatment of severe psoriasis. Am J Clin Dermatol. 2000;1(1):27–39.

    Article  CAS  PubMed  Google Scholar 

  11. Gaffen SL. An overview of IL-17 function and signaling. Cytokine. 2008;43(3):402–7. doi:10.1016/j.cyto.2008.07.017.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10(7):479–89. doi:10.1038/nri2800.

    Article  CAS  PubMed  Google Scholar 

  13. Hu Y, Shen F, Crellin NK, Ouyang W. The IL-17 pathway as a major therapeutic target in autoimmune diseases. Ann N Y Acad Sci. 2011;1217:60–76. doi:10.1111/j.1749-6632.2010.05825.x.

    Article  CAS  PubMed  Google Scholar 

  14. Girolomoni G, Mrowietz U, Paul C. Psoriasis: rationale for targeting interleukin-17. Br J Dermatol. 2012;167(4):717–24. doi:10.1111/j.1365-2133.2012.11099.x.

    Article  CAS  PubMed  Google Scholar 

  15. Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I, Bruin G et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med. 2010;2(52):52ra72. doi:10.1126/scitranslmed.3001107.

  16. Miossec P. IL-17 and Th17 cells in human inflammatory diseases. Microbes Infect. 2009;11(5):625–30. doi:10.1016/j.micinf.2009.04.003.

    Article  CAS  PubMed  Google Scholar 

  17. Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11(10):763–76. doi:10.1038/nrd3794.

    Article  CAS  PubMed  Google Scholar 

  18. Zhu S, Qian Y. IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential. Clin Sci (Lond). 2012;122(11):487–511. doi:10.1042/CS20110496.

    Article  CAS  PubMed  Google Scholar 

  19. Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol. 2009;129(6):1339–50. doi:10.1038/jid.2009.59.

    Article  PubMed  Google Scholar 

  20. Ma HL, Liang S, Li J, Napierata L, Brown T, Benoit S, et al. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest. 2008;118(2):597–607. doi:10.1172/JCI33263.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Rosmarin D, Strober BE. The potential of interleukin 12 inhibition in the treatment of psoriasis. J Drugs Dermatol. 2005;4(3):318–25.

    PubMed  Google Scholar 

  22. Menter A, Korman NJ, Elmets CA, Feldman SR, Gelfand JM, Gordon KB, et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: section 6. Guidelines of care for the treatment of psoriasis and psoriatic arthritis: case-based presentations and evidence-based conclusions. J Am Acad Dermatol. 2011;65(1):137–74. doi:10.1016/j.jaad.2010.11.055.

    Article  PubMed  Google Scholar 

  23. Nast A, Boehncke WH, Mrowietz U, Ockenfels HM, Philipp S, Reich K, et al. S3-Guidelines on the treatment of Psoriasis vulgaris (English version). Update. J Dtsch Dermatol Ges. 2012;10(Suppl 2):S1–95. doi:10.1111/j.1610-0387.2012.07919.x.

    Article  Google Scholar 

  24. Reich K, Signorovitch J, Ramakrishnan K, Yu AP, Wu EQ, Gupta SR, et al. Benefit-risk analysis of adalimumab versus methotrexate and placebo in the treatment of moderate to severe psoriasis: comparison of adverse event-free response days in the CHAMPION trial. J Am Acad Dermatol. 2010;63(6):1011–8. doi:10.1016/j.jaad.2009.12.029.

    Article  CAS  PubMed  Google Scholar 

  25. van Lumig PP, Driessen RJ, Berends MA, Boezeman JB, van de Kerkhof PC, de Jong EM. Safety of treatment with biologics for psoriasis in daily practice: 5-year data. J Eur Acad Dermatol Venereol. 2012;26(3):283–91. doi:10.1111/j.1468-3083.2011.04044.x.

    Article  PubMed  Google Scholar 

  26. Esposito M, Gisondi P, Cassano N, Ferrucci G, Del Giglio M, Loconsole F, et al. Survival rate of antitumour necrosis factor-alpha treatments for psoriasis in routine dermatological practice: a multicentre observational study. Br J Dermatol. 2013;169(3):666–72. doi:10.1111/bjd.12422.

    Article  CAS  PubMed  Google Scholar 

  27. Le Saux N. Biologic response modifiers to decrease inflammation: focus on infection risks. Paediatr Child Health. 2012;17(3):147–54.

    PubMed Central  PubMed  Google Scholar 

  28. Imperato AK, Bingham CO 3rd, Abramson SB. Overview of benefit/risk of biological agents. Clin Exp Rheumatol. 2004;22(5 Suppl 35):S108–14.

    CAS  PubMed  Google Scholar 

  29. Menter A. The status of biologic therapies in the treatment of moderate to severe psoriasis. Cutis. 2009;84(4 Suppl):14–24.

    PubMed  Google Scholar 

  30. Ortiz-Ibanez K, Alsina MM, Munoz-Santos C. Tofacitinib and other kinase inhibitors in the treatment of psoriasis. Actas Dermosifiliogr. 2013;104(4):304–10. doi:10.1016/j.adengl.2013.03.002.

    Article  CAS  PubMed  Google Scholar 

  31. ClinicalTrials.gov. A study to evaluate the efficacy and safety/tolerability of subcutaneous SCH 900222/MK-3222 in participants with moderate-to-severe chronic plaque psoriasis (P07771/MK-3222-011). 2013. http://www.clinicaltrials.gov/show/NCT01729754. Accessed 25 Sept 2013.

  32. Strober B, Buonanno M, Clark JD, Kawabata T, Tan H, Wolk R, et al. Effect of tofacitinib, a Janus kinase inhibitor, on haematological parameters during 12 weeks of psoriasis treatment. Br J Dermatol. 2013. doi:10.1111/bjd.12517.

    Google Scholar 

  33. Papp KA, Menter A, Strober B, Langley RG, Buonanno M, Wolk R, et al. Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, in the treatment of psoriasis: a phase 2b randomized placebo-controlled dose-ranging study. Br J Dermatol. 2012;167(3):668–77. doi:10.1111/j.1365-2133.2012.11168.x.

    Article  CAS  PubMed  Google Scholar 

  34. Leonardi C, Matheson R, Zachariae C, Cameron G, Li L, Edson-Heredia E, et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med. 2012;366(13):1190–9. doi:10.1056/NEJMoa1109997.

    Article  CAS  PubMed  Google Scholar 

  35. Papp KA, Leonardi C, Menter A, Ortonne JP, Krueger JG, Kricorian G, et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl J Med. 2012;366(13):1181–9. doi:10.1056/NEJMoa1109017.

    Article  CAS  PubMed  Google Scholar 

  36. Papp KA, Langley RG, Sigurgeirsson B, Abe M, Baker DR, Konno P, et al. Efficacy and safety of secukinumab in the treatment of moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled phase II dose-ranging study. Br J Dermatol. 2013;168(2):412–21. doi:10.1111/bjd.12110.

    Article  CAS  PubMed  Google Scholar 

  37. Menter A, Gottlieb A, Feldman SR, Van Voorhees AS, Leonardi CL, Gordon KB, et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics. J Am Acad Dermatol. 2008;58(5):826–50. doi:10.1016/j.jaad.2008.02.039.

    Article  PubMed  Google Scholar 

  38. Zeichner JA. A practical approach to screening psoriasis patients for therapy with biologic agents. J Clin Aesthet Dermatol. 2008;1(3):50–4.

    Google Scholar 

  39. Vincent FB, Morand EF, Murphy K, Mackay F, Mariette X, Marcelli C. Antidrug antibodies (ADAb) to tumour necrosis factor (TNF)-specific neutralising agents in chronic inflammatory diseases: a real issue, a clinical perspective. Ann Rheum Dis. 2013;72(2):165–78. doi:10.1136/annrheumdis-2012-202545.

    Article  CAS  PubMed  Google Scholar 

  40. Dorner T, Kinnman N. Tak PP. Targeting B cells in immune-mediated inflammatory disease: a comprehensive review of mechanisms of action and identification of biomarkers. Pharmacol Ther. 2010;125(3):464–75. doi:10.1016/j.pharmthera.2010.01.001.

    Article  PubMed  Google Scholar 

  41. Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S, et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity. 2009;31(5):787–98. doi:10.1016/j.immuni.2009.09.014.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Eyerich K, Pennino D, Scarponi C, Foerster S, Nasorri F, Behrendt H et al. IL-17 in atopic eczema: linking allergen-specific adaptive and microbial-triggered innate immune response. J Allergy Clin Immunol. 2009;123(1):59–66 e4. doi:10.1016/j.jaci.2008.10.031.

  43. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med. 2001;194(4):519–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Hirahara K, Ghoreschi K, Laurence A, Yang XP, Kanno Y, O’Shea JJ. Signal transduction pathways and transcriptional regulation in Th17 cell differentiation. Cytokine Growth Factor Rev. 2010;21(6):425–34. doi:10.1016/j.cytogfr.2010.10.006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Parachuru VP, Coates DE, Milne TJ, Hussaini HM, Rich AM, Seymour GJ. Forkhead box P3-positive regulatory T-cells and interleukin 17-positive T-helper 17 cells in chronic inflammatory periodontal disease. J Periodontal Res. 2014. doi:10.1111/jre.12169.

    PubMed  Google Scholar 

  46. Corneth OB, Mus AM, Asmawidjaja PS, Klein Wolterink RG, van Nimwegen M, Brem MD et al. Absence of interleukin-17 receptor A signaling prevents autoimmune inflammation of the joint and leads to a Th2-like phenotype in collagen-induced arthritis. Arthritis Rheumatol. 2014;66(2):340–9. doi:10.1002/art.38229.

  47. Pennino D, Eyerich K, Scarponi C, Carbone T, Eyerich S, Nasorri F, et al. IL-17 amplifies human contact hypersensitivity by licensing hapten nonspecific Th1 cells to kill autologous keratinocytes. J Immunol. 2010;184(9):4880–8. doi:10.4049/jimmunol.0901767.

    Article  CAS  PubMed  Google Scholar 

  48. Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y, Awasthi A, et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature. 2013;496(7446):461–8. doi:10.1038/nature11981.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. O’Shea JJ, Steward-Tharp SM, Laurence A, Watford WT, Wei L, Adamson AS, et al. Signal transduction and Th17 cell differentiation. Microbes Infect. 2009;11(5):599–611. doi:10.1016/j.micinf.2009.04.007.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Ichiyama K, Yoshida H, Wakabayashi Y, Chinen T, Saeki K, Nakaya M, et al. Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J Biol Chem. 2008;283(25):17003–8. doi:10.1074/jbc.M801286200.

    Article  CAS  PubMed  Google Scholar 

  51. Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med. 2009;361(9):888–98. doi:10.1056/NEJMra0707449.

    Article  CAS  PubMed  Google Scholar 

  52. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517. doi:10.1146/annurev.immunol.021908.132710.

    Article  CAS  PubMed  Google Scholar 

  53. O’Garra A, Stockinger B, Veldhoen M. Differentiation of human T(H)-17 cells does require TGF-beta!. Nat Immunol. 2008;9(6):588–90. doi:10.1038/ni0608-588.

    Article  PubMed  Google Scholar 

  54. Chen Z, Laurence A, O’Shea JJ. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation. Semin Immunol. 2007;19(6):400–8. doi:10.1016/j.smim.2007.10.015.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Cai Y, Shen X, Ding C, Qi C, Li K, Li X, et al. Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity. 2011;35(4):596–610. doi:10.1016/j.immuni.2011.08.001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Katayama M, Ohmura K, Yukawa N, Terao C, Hashimoto M, Yoshifuji H, et al. Neutrophils are essential as a source of IL-17 in the effector phase of arthritis. PLoS One. 2013;8(5):e62231. doi:10.1371/journal.pone.0062231.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Gaffen SL. Recent advances in the IL-17 cytokine family. Curr Opin Immunol. 2011;23(5):613–9. doi:10.1016/j.coi.2011.07.006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Pappu R, Ramirez-Carrozzi V, Ota N, Ouyang W, Hu Y. The IL-17 family cytokines in immunity and disease. J Clin Immunol. 2010;30(2):185–95. doi:10.1007/s10875-010-9369-6.

    Article  CAS  PubMed  Google Scholar 

  59. Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009;9(8):556–67. doi:10.1038/nri2586.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Gaffen SL, Kramer JM, Yu JJ, Shen F. The IL-17 cytokine family. Vitam Horm. 2006;74:255–82. doi:10.1016/S0083-6729(06)74010-9.

    Article  CAS  PubMed  Google Scholar 

  61. Gaffen SL. Life before seventeen: cloning of the IL-17 receptor. J Immunol. 2011;187(9):4389–91. doi:10.4049/jimmunol.1102576.

    Article  CAS  PubMed  Google Scholar 

  62. Steiner GE, Newman ME, Paikl D, Stix U, Memaran-Dagda N, Lee C, et al. Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate. Prostate. 2003;56(3):171–82. doi:10.1002/pros.10238.

    Article  CAS  PubMed  Google Scholar 

  63. Albanesi C, Scarponi C, Cavani A, Federici M, Nasorri F, Girolomoni G. Interleukin-17 is produced by both Th1 and Th2 lymphocytes, and modulates interferon-gamma- and interleukin-4-induced activation of human keratinocytes. J Invest Dermatol. 2000;115(1):81–7. doi:10.1046/j.1523-1747.2000.00041.x.

    Article  CAS  PubMed  Google Scholar 

  64. Xu S, Cao X. Interleukin-17 and its expanding biological functions. Cell Mol Immunol. 2010;7(3):164–74. doi:10.1038/cmi.2010.21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Doyle MS, Collins ES, Fitzgerald OM, Pennington SR. New insight into the functions of the interleukin-17 receptor adaptor protein Act1 in psoriatic arthritis. Arthritis Res Ther. 2012;14(5):226. doi:10.1186/ar4071.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Kehlen A, Thiele K, Riemann D, Langner J. Expression, modulation and signalling of IL-17 receptor in fibroblast-like synoviocytes of patients with rheumatoid arthritis. Clin Exp Immunol. 2002;127(3):539–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Cho ML, Kang JW, Moon YM, Nam HJ, Jhun JY, Heo SB, et al. STAT3 and NF-kappaB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J Immunol. 2006;176(9):5652–61.

    Article  CAS  PubMed  Google Scholar 

  68. Patel DN, King CA, Bailey SR, Holt JW, Venkatachalam K, Agrawal A, et al. Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-kappaB and C/EBPbeta activation. J Biol Chem. 2007;282(37):27229–38. doi:10.1074/jbc.M703250200.

    Article  CAS  PubMed  Google Scholar 

  69. Song X, Qian Y. IL-17 family cytokines mediated signaling in the pathogenesis of inflammatory diseases. Cell Signal. 2013;25(12):2335–47. doi:10.1016/j.cellsig.2013.07.021.

    Article  CAS  PubMed  Google Scholar 

  70. Gutowska-Owsiak D, Schaupp AL, Salimi M, Selvakumar TA, McPherson T, Taylor S, et al. IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion. Exp Dermatol. 2012;21(2):104–10. doi:10.1111/j.1600-0625.2011.01412.x.

    Article  CAS  PubMed  Google Scholar 

  71. Kato H, Endres J, Fox DA. The roles of IFN-gamma versus IL-17 in pathogenic effects of human Th17 cells on synovial fibroblasts. Mod Rheumatol. 2013. doi:10.1007/s10165-012-0811-x.

    PubMed Central  Google Scholar 

  72. Russolillo A, Iervolino S, Peluso R, Lupoli R, Di Minno A, Pappone N, et al. Obesity and psoriatic arthritis: from pathogenesis to clinical outcome and management. Rheumatology (Oxford). 2013;52(1):62–7. doi:10.1093/rheumatology/kes242.

    Article  CAS  PubMed  Google Scholar 

  73. Marzano AV, Tedeschi A, Polloni I, Crosti C, Cugno M. Interactions between inflammation and coagulation in autoimmune and immune-mediated skin diseases. Curr Vasc Pharmacol. 2012;10(5):647–52.

    Article  CAS  PubMed  Google Scholar 

  74. Nograles KE, Zaba LC, Guttman-Yassky E, Fuentes-Duculan J, Suarez-Farinas M, Cardinale I, et al. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br J Dermatol. 2008;159(5):1092–102. doi:10.1111/j.1365-2133.2008.08769.x.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Albanesi C, Scarponi C, Bosisio D, Sozzani S, Girolomoni G. Immune functions and recruitment of plasmacytoid dendritic cells in psoriasis. Autoimmunity. 2010;43(3):215–9. doi:10.3109/08916930903510906.

    Article  CAS  PubMed  Google Scholar 

  76. Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Suarez-Farinas M, Fuentes-Duculan J, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med. 2007;204(13):3183–94. doi:10.1084/jem.20071094.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Albanesi C, Cavani A, Girolomoni G. IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes: synergistic or antagonist effects with IFN-gamma and TNF-alpha. J Immunol. 1999;162(1):494–502.

    CAS  PubMed  Google Scholar 

  78. Rizzo HL, Kagami S, Phillips KG, Kurtz SE, Jacques SL, Blauvelt A. IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. J Immunol. 2011;186(3):1495–502. doi:10.4049/jimmunol.1001001.

    Article  CAS  PubMed  Google Scholar 

  79. Schett G. Joint remodelling in inflammatory disease. Ann Rheum Dis. 2007;66 Suppl 3:iii42–4. doi:10.1136/ard.2007.078972.

  80. de Rooy DP, van der Linden MP, Knevel R, Huizinga TW, van der Helm-van Mil AH. Predicting arthritis outcomes—what can be learned from the Leiden Early Arthritis Clinic? Rheumatology (Oxford). 2011;50(1):93–100. doi:10.1093/rheumatology/keq230.

  81. Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y, et al. Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther. 2010;12(1):R29. doi:10.1186/ar2936.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Kostenuik PJ, Shalhoub V. Osteoprotegerin: a physiological and pharmacological inhibitor of bone resorption. Curr Pharm Des. 2001;7(8):613–35.

    Article  CAS  PubMed  Google Scholar 

  83. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42. doi:10.1038/nature01658.

    Article  CAS  PubMed  Google Scholar 

  84. Stolina M, Adamu S, Ominsky M, Dwyer D, Asuncion F, Geng Z, et al. RANKL is a marker and mediator of local and systemic bone loss in two rat models of inflammatory arthritis. J Bone Miner Res. 2005;20(10):1756–65. doi:10.1359/JBMR.050601.

    Article  CAS  PubMed  Google Scholar 

  85. Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology. 2005;146(11):4577–83. doi:10.1210/en.2005-0239.

    Article  CAS  PubMed  Google Scholar 

  86. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007;13(2):156–63. doi:10.1038/nm1538.

    Article  CAS  PubMed  Google Scholar 

  87. Crotti TN, Smith MD, Weedon H, Ahern MJ, Findlay DM, Kraan M, et al. Receptor activator NF-kappaB ligand (RANKL) expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathy, osteoarthritis, and from normal patients: semiquantitative and quantitative analysis. Ann Rheum Dis. 2002;61(12):1047–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Liu YY, Long L, Wang SY, Guo JP, Ye H, Cui LF, et al. Circulating Dickkopf-1 and osteoprotegerin in patients with early and longstanding rheumatoid arthritis. Chin Med J (Engl). 2010;123(11):1407–12.

    CAS  PubMed  Google Scholar 

  89. Singh TP, Schon MP, Wallbrecht K, Michaelis K, Rinner B, Mayer G, et al. 8-Methoxypsoralen plus ultraviolet A therapy acts via inhibition of the IL-23/Th17 axis and induction of Foxp3+ regulatory T cells involving CTLA4 signaling in a psoriasis-like skin disorder. J Immunol. 2010;184(12):7257–67. doi:10.4049/jimmunol.0903719.

    Article  CAS  PubMed  Google Scholar 

  90. Gudjonsson JE, Johnston A, Ellis CN. Novel systemic drugs under investigation for the treatment of psoriasis. J Am Acad Dermatol. 2012;67(1):139–47. doi:10.1016/j.jaad.2011.06.037.

    Article  CAS  PubMed  Google Scholar 

  91. Patel DD, Lee DM, Kolbinger F, Antoni C. Effect of IL-17A blockade with secukinumab in autoimmune diseases. Ann Rheum Dis. 2013;72 Suppl 2:ii116–23. doi:10.1136/annrheumdis-2012-202371.

  92. Rich P, Sigurgeirsson B, Thaci D, Ortonne JP, Paul C, Schopf RE, et al. Secukinumab induction and maintenance therapy in moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled, phase II regimen-finding study. Br J Dermatol. 2013;168(2):402–11. doi:10.1111/bjd.12112.

    Article  CAS  PubMed  Google Scholar 

  93. Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Mazurov V, et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis. 2013;72(6):863–9. doi:10.1136/annrheumdis-2012-201601.

    Article  CAS  PubMed  Google Scholar 

  94. Kagami S, Rizzo HL, Kurtz SE, Miller LS, Blauvelt A. IL-23 and IL-17A, but not IL-12 and IL-22, are required for optimal skin host defense against Candida albicans. J Immunol. 2010;185(9):5453–62. doi:10.4049/jimmunol.1001153.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. McInnes IB, Sieper J, Braun J, Emery P, van der Heijde D, Isaacs JD, et al. Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial. Ann Rheum Dis. 2013. doi:10.1136/annrheumdis-2012-202646.

    Google Scholar 

  96. Dick AD, Tugal-Tutkun I, Foster S, Zierhut M, Melissa Liew SH, Bezlyak V et al. Secukinumab in the treatment of noninfectious uveitis: results of three randomized, controlled clinical trials. Ophthalmology. 2013;120(4):777–87. doi:10.1016/j.ophtha.2012.09.040.

  97. Rich P, Sigurgeirsson B, Thaci DP, Ortonne JP, Paul C, Schopf RE, et al. Secukinumab induction and maintenance therapy in moderate-to-severe plaque psoriasis: a randomised, double-blind, placebo-controlled, phase II regimen-finding study. Br J Dermatol. 2012. doi:10.1111/bjd.12070.

    PubMed  Google Scholar 

  98. Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61(12):1693–700. doi:10.1136/gutjnl-2011-301668.

    Article  CAS  PubMed  Google Scholar 

  99. Her M, Kavanaugh A. Treatment of spondyloarthropathy: the potential for agents other than TNF inhibitors. Curr Opin Rheumatol. 2013. doi:10.1097/BOR.0b013e3283620177.

    PubMed  Google Scholar 

  100. Meyer MW, Zachariae C, Bendtzen K, Skov L. Lack of anti-drug antibodies in patients with psoriasis well-controlled on long-term treatment with tumour necrosis factor inhibitors. Acta Derm Venereol. 2012;92(4):362–4. doi:10.2340/00015555-1376.

    Article  CAS  PubMed  Google Scholar 

  101. Gajdosik Z. Brodalumab (AMG-827). Drugs Fut. 2012;37(12):837.

    Article  CAS  Google Scholar 

  102. Busse WW, Holgate S, Kerwin E, Chon Y, Feng J, Lin J, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med. 2013;188(11):1294–302. doi:10.1164/rccm.201212-2318OC.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Elisabetta Parretta and Concetta Rafaniello for their collaboration on the pharmacological aspects of this work.

We wish to thank Mary Hines and Sheridan Henness, PhD, of Springer Healthcare Communications, for medical writing assistance. This assistance was funded by Novartis Pharma, Italy.

SA has served as a consultant and/or paid speaker for and/or participated in clinical trials sponsored by companies that manufacture drugs used for the treatment of rheumatic diseases, including Amgen, Eli-Lilly, Merck Sharp & Dohme and Novartis.

AC has served as a consultant and/or paid speaker for and/or participated in clinical trials sponsored by companies that manufacture drugs used for the treatment of psoriasis, including Abbott, Novartis and Pfizer.

FR has served as a paid speaker and consultant on advisory boards for Allergan, GFK, Italfarmaco, Novartis, Otsuka Pharmaceutical and Sanofi-Aventis.

GG has served as a consultant and/or paid speaker for and/or participated in clinical trials sponsored by companies that manufacture drugs used for the treatment of psoriasis, including AbbVie, Actelion, Almirall, Celgene, Eli-Lilly, Janssen, LEO Pharma, Merck Sharp & Dohme, Novartis and Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero Girolomoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adami, S., Cavani, A., Rossi, F. et al. The Role of Interleukin-17A in Psoriatic Disease. BioDrugs 28, 487–497 (2014). https://doi.org/10.1007/s40259-014-0098-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-014-0098-x

Keywords

Navigation