Skip to main content
Log in

Recent Advances in Treatment of Systemic Sclerosis and Morphea

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Systemic sclerosis (SSc) and morphea are autoimmune sclerosing diseases that cause significant morbidity, and in the case of SSc, mortality. The pathogenesis of both SSc and morphea share vascular dysfunction, auto-reactive T cells and Th2-associated cytokines, such as interleukin 4, and overproduction of transforming growth factor beta (TGFβ). TGFβ stimulates fibroblast collagen and extra-cellular matrix production. Although morphea and SSc have similar pathogenic pathways and histological findings, they are distinct diseases. Recent advances in treatment of morphea, skin sclerosis in SSc, and interstitial lung disease in SSc are focused on targeting known pathogenic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pope JE, et al. State-of-the-art evidence in the treatment of SSc. Nat Rev Rheumatol. 2023;19(4):212–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Low AHL, et al. Evaluation of Scleroderma Clinical Trials Consortium training recommendations on modified Rodnan skin score assessment in scleroderma. Int J Rheum Dis. 2019;22(6):1036–40.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Herrick AL, Assassi S, Denton CP. Skin involvement in early diffuse cutaneous SSc: an unmet clinical need. Nat Rev Rheumatol. 2022;18(5):276–85.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Khanna D, et al. The American College of Rheumatology Provisional Composite Response Index for Clinical Trials in Early Diffuse Cutaneous SSc. Arthritis Rheumatol. 2016;68(2):299–311.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Khanna D, et al. New composite endpoint in early diffuse cutaneous SSc: revisiting the provisional American College of Rheumatology Composite Response Index in SSc. Ann Rheum Dis. 2021;80(5):641–50.

    Article  PubMed  Google Scholar 

  6. Mulcaire-Jones E, et al. Advances in biological and targeted therapies for SSc. Expert Opin Biol Ther. 2023;23(4):325–39.

    Article  CAS  PubMed  Google Scholar 

  7. Di Battista M, et al. SSc: one year in review 2023. Clin Exp Rheumatol. 2023;41(8):1567–74.

  8. Pellar RE, Pope JE. Evidence-based management of SSc: navigating recommendations and guidelines. Semin Arthritis Rheum. 2017;46(6):767–74.

    Article  PubMed  Google Scholar 

  9. Denton CP, et al. BSR and BHPR guideline for the treatment of SSc. Rheumatology (Oxford). 2016;55(10):1906–10.

    Article  PubMed  Google Scholar 

  10. Kowal-Bielecka O, et al. Update of EULAR recommendations for the treatment of SSc. Ann Rheum Dis. 2017;76(8):1327–39.

    Article  PubMed  Google Scholar 

  11. Fernandez-Codina A, et al. Treatment algorithms for SSc according to experts. Arthritis Rheumatol. 2018;70(11):1820–8.

    Article  CAS  PubMed  Google Scholar 

  12. van den Hoogen FH, et al. Comparison of methotrexate with placebo in the treatment of SSc: a 24 week randomized double-blind trial, followed by a 24 week observational trial. Br J Rheumatol. 1996;35(4):364–72.

    Article  PubMed  Google Scholar 

  13. Pope JE, et al. A randomized, controlled trial of methotrexate versus placebo in early diffuse scleroderma. Arthritis Rheum. 2001;44(6):1351–8.

    Article  CAS  PubMed  Google Scholar 

  14. Namas R, et al. Efficacy of mycophenolate mofetil and oral cyclophosphamide on skin thickness: post hoc analyses from two randomized placebo-controlled trials. Arthritis Care Res (Hoboken). 2018;70(3):439–44.

    Article  CAS  PubMed  Google Scholar 

  15. Tashkin DP, et al. Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): a randomised controlled, double-blind, parallel group trial. Lancet Respir Med. 2016;4(9):708–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tashkin DP, et al. Cyclophosphamide versus placebo in scleroderma lung disease. N Engl J Med. 2006;354(25):2655–66.

    Article  CAS  PubMed  Google Scholar 

  17. Yoshifuji H, et al. Role of rituximab in the treatment of SSc: a literature review. Mod Rheumatol. 2023;33(6):1068–77.

  18. Sullivan KM, et al. Myeloablative autologous stem-cell transplantation for severe scleroderma. N Engl J Med. 2018;378(1):35–47.

    Article  PubMed  PubMed Central  Google Scholar 

  19. van Bijnen S, et al. Predictive factors for treatment-related mortality and major adverse events after autologous haematopoietic stem cell transplantation for SSc: results of a long-term follow-up multicentre study. Ann Rheum Dis. 2020;79(8):1084–9.

    Article  PubMed  Google Scholar 

  20. van Laar JM, et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous SSc: a randomized clinical trial. JAMA. 2014;311(24):2490–8.

    Article  PubMed  Google Scholar 

  21. Herrick AL, et al. Treatment outcome in early diffuse cutaneous SSc: the European Scleroderma Observational Study (ESOS). Ann Rheum Dis. 2017;76(7):1207–18.

    Article  CAS  PubMed  Google Scholar 

  22. Bruera S, et al. Stem cell transplantation for SSc. Cochrane Database Syst Rev. 2022;7(7):CD011819.

    PubMed  Google Scholar 

  23. Burt RK, et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for SSc (ASSIST): an open-label, randomised phase 2 trial. Lancet. 2011;378(9790):498–506.

    Article  CAS  PubMed  Google Scholar 

  24. Wollin L, et al. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J. 2015;45(5):1434–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Distler O, et al. Nintedanib for SSc-associated interstitial lung disease. N Engl J Med. 2019;380(26):2518–28.

    Article  CAS  PubMed  Google Scholar 

  26. Khanna D, et al. Safety and efficacy of subcutaneous tocilizumab in adults with SSc (faSScinate): a phase 2, randomised, controlled trial. Lancet. 2016;387(10038):2630–40.

    Article  CAS  PubMed  Google Scholar 

  27. Khanna D, et al. Tocilizumab in SSc: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med. 2020;8(10):963–74.

    Article  CAS  PubMed  Google Scholar 

  28. Khanna D, et al. Abatacept in early diffuse cutaneous SSc: results of a phase II investigator-initiated, multicenter, double-blind, randomized, placebo-controlled trial. Arthritis Rheumatol. 2020;72(1):125–36.

    Article  CAS  PubMed  Google Scholar 

  29. Domsic RT, et al. A data-driven approach finds RNA polymerase III antibody and tendon friction rubs as enrichment tools for early diffuse scleroderma trials. Rheumatology (Oxford). 2023;62(4):1543–51.

    Article  PubMed  Google Scholar 

  30. Moriana C, et al. JAK inhibitors and SSc: a systematic review of the literature. Autoimmun Rev. 2022;21(10):103168.

    Article  CAS  PubMed  Google Scholar 

  31. Khanna D, et al. Riociguat in patients with early diffuse cutaneous SSc (RISE-SSc): randomised, double-blind, placebo-controlled multicentre trial. Ann Rheum Dis. 2020;79(5):618–25.

    Article  PubMed  Google Scholar 

  32. Giorgi V, et al. Cannabis and autoimmunity: possible mechanisms of action. Immunotargets Ther. 2021;10:261–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Spiera R, et al. Efficacy and safety of lenabasum, a cannabinoid type 2 receptor agonist, in a phase 3 randomized trial in diffuse cutaneous SSc. Arthritis Rheumatol. 2023;75(9):1608–18.

  34. Allanore Y, et al. A randomised, double-blind, placebo-controlled, 24-week, phase II, proof-of-concept study of romilkimab (SAR156597) in early diffuse cutaneous SSc. Ann Rheum Dis. 2020;79(12):1600–7.

    Article  CAS  PubMed  Google Scholar 

  35. Khanna D, et al. A 24-week, phase IIa, randomized, double-blind, placebo-controlled study of ziritaxestat in early diffuse cutaneous SSc. Arthritis Rheumatol. 2023;75(8):1434–44.

  36. Rice LM, et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in SSc patients. J Clin Invest. 2015;125(7):2795–807.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fukasawa T, et al. Interleukin-17 pathway inhibition with brodalumab in early SSc: analysis of a single-arm, open-label, phase 1 trial. J Am Acad Dermatol. 2023;89(2):366–9.

    Article  CAS  PubMed  Google Scholar 

  38. Guo X, et al. Suppression of T cell activation and collagen accumulation by an anti-IFNAR1 mAb, anifrolumab, in adult patients with SSc. J Invest Dermatol. 2015;135(10):2402–9.

    Article  CAS  PubMed  Google Scholar 

  39. Bergmann C, et al. Treatment of a patient with severe SSc (SSc) using CD19-targeted CAR T cells. Ann Rheum Dis. 2023;82(8):1117–20.

    Article  MathSciNet  PubMed  Google Scholar 

  40. Murray KJ, Laxer RM. Scleroderma in children and adolescents. Rheum Dis Clin N Am. 2002;28(3):603–24.

    Article  Google Scholar 

  41. Peterson LS, et al. The epidemiology of morphea (localized scleroderma) in Olmsted County 1960–1993. J Rheumatol. 1997;24(1):73–80.

    CAS  PubMed  Google Scholar 

  42. Fett N, Werth VP. Update on morphea: part I. Epidemiology, clinical presentation, and pathogenesis. J Am Acad Dermatol. 2011;64(2):217–28 (quiz 229–230).

    Article  PubMed  Google Scholar 

  43. Laxer RM, Zulian F. Localized scleroderma. Curr Opin Rheumatol. 2006;18(6):606–13.

    Article  PubMed  Google Scholar 

  44. Zannin ME, et al. Ocular involvement in children with localised scleroderma: a multi-centre study. Br J Ophthalmol. 2007;91(10):1311–4.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Christen-Zaech S, et al. Pediatric morphea (localized scleroderma): review of 136 patients. J Am Acad Dermatol. 2008;59(3):385–96.

    Article  PubMed  Google Scholar 

  46. Zulian F, et al. Juvenile localized scleroderma: clinical and epidemiological features in 750 children. An international study. Rheumatology (Oxford). 2006;45(5):614–20.

    Article  CAS  PubMed  Google Scholar 

  47. Kister I, et al. Neurologic manifestations of localized scleroderma: a case report and literature review. Neurology. 2008;71(19):1538–45.

    Article  PubMed  Google Scholar 

  48. Lis-Swiety A, et al. Health-related quality of life and its influencing factors in adult patients with localized scleroderma—a cross-sectional study. Health Qual Life Outcomes. 2020;18(1):133.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Das S, Bernstein I, Jacobe H. Correlates of self-reported quality of life in adults and children with morphea. J Am Acad Dermatol. 2014;70(5):904–10.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ardalan K, Zigler CK, Torok KS. Predictors of longitudinal quality of life in juvenile localized scleroderma. Arthritis Care Res (Hoboken). 2017;69(7):1082–7.

    Article  CAS  PubMed  Google Scholar 

  51. Zigler CK, et al. Exploring the impact of paediatric localized scleroderma on health-related quality of life: focus groups with youth and caregivers. Br J Dermatol. 2020;183(4):692–701.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  52. Arkachaisri T, et al. Development and initial validation of the localized scleroderma skin damage index and physician global assessment of disease damage: a proof-of-concept study. Rheumatology (Oxford). 2010;49(2):373–81.

    Article  PubMed  Google Scholar 

  53. Agazzi A, et al. Reliability of LoSCAT score for activity and tissue damage assessment in a large cohort of patients with juvenile localized scleroderma. Pediatr Rheumatol Online J. 2018;16(1):37.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kelsey CE, Torok KS. The Localized Scleroderma Cutaneous Assessment Tool: responsiveness to change in a pediatric clinical population. J Am Acad Dermatol. 2013;69(2):214–20.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Skrzypek-Salamon A, et al. Localized Scleroderma Cutaneous Assessment Tool (LoSCAT) adapted for use in adult patients: report from an initial validation study. Health Qual Life Outcomes. 2018;16(1):185.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Teske NM, Jacobe HT. using the localized scleroderma cutaneous assessment tool (loscat) to classify morphoea by severity and identify clinically significant change. Br J Dermatol. 2020;182(2):398–404.

    Article  CAS  PubMed  Google Scholar 

  57. Torok KS. Assigning values to the Localized Scleroderma Cutaneous Assessment Tool (LoSCAT) score indicating degree of severity and responsiveness: fostering practical use in clinic and therapeutic studies for morphoea/localized scleroderma. Br J Dermatol. 2020;182(2):272–3.

    Article  CAS  PubMed  Google Scholar 

  58. Fett N, Werth VP. Update on morphea: part II. Outcome measures and treatment. J Am Acad Dermatol. 2011;64(2):231–42 (quiz 243–244).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kroft EB, et al. Efficacy of topical tacrolimus 0.1% in active plaque morphea: randomized, double-blind, emollient-controlled pilot study. Am J Clin Dermatol. 2009;10(3):181–7.

    Article  PubMed  Google Scholar 

  60. Badea I, et al. Pathogenesis and therapeutic approaches for improved topical treatment in localized scleroderma and SSc. Rheumatology (Oxford). 2009;48(3):213–21.

    Article  CAS  PubMed  Google Scholar 

  61. Cunningham BB, et al. Topical calcipotriene for morphea/linear scleroderma. J Am Acad Dermatol. 1998;39(2 Pt 1):211–5.

    Article  CAS  PubMed  Google Scholar 

  62. Kreuter A, et al. Combined treatment with calcipotriol ointment and low-dose ultraviolet al phototherapy in childhood morphea. Pediatr Dermatol. 2001;18(3):241–5.

    Article  CAS  PubMed  Google Scholar 

  63. Petty AJ, et al. Pilot, open-label, single-arm clinical trial evaluating the efficacy of topical crisaborole for steroid refractory morphea. J Am Acad Dermatol. 2023;89(2):390–2.

    Article  CAS  PubMed  Google Scholar 

  64. Dytoc M, et al. Evaluation of the efficacy and safety of topical imiquimod 5% for plaque-type morphea: a multicenter, prospective, vehicle-controlled trial. J Cutan Med Surg. 2015;19(2):132–9.

    Article  CAS  PubMed  Google Scholar 

  65. Pope E, et al. Topical imiquimod 5% cream for pediatric plaque morphea: a prospective, multiple-baseline, open-label pilot study. Dermatology. 2011;223(4):363–9.

    Article  CAS  PubMed  Google Scholar 

  66. Campione E, et al. Localized morphea treated with imiquimod 5% and dermoscopic assessment of effectiveness. J Dermatolog Treat. 2009;20(1):10–3.

    Article  CAS  PubMed  Google Scholar 

  67. Gruss C, et al. Induction of interstitial collagenase (MMP-1) by UVA-1 phototherapy in morphea fibroblasts. Lancet. 1997;350(9087):1295–6.

    Article  CAS  PubMed  Google Scholar 

  68. Gruss CJ, et al. Effects of low dose ultraviolet A-1 phototherapy on morphea. Photodermatol Photoimmunol Photomed. 2001;17(4):149–55.

    Article  CAS  PubMed  Google Scholar 

  69. Morita A, et al. Ultraviolet al (340–400 nm) phototherapy for scleroderma in SSc. J Am Acad Dermatol. 2000;43(4):670–4.

    Article  CAS  PubMed  Google Scholar 

  70. Yin L, et al. The expression of matrix metalloproteinase-1 mRNA induced by ultraviolet al (340–400 nm) is phototherapy relevant to the glutathione (GSH) content in skin fibroblasts of SSc. J Dermatol. 2003;30(3):173–80.

    Article  CAS  PubMed  Google Scholar 

  71. Grabbe J, et al. High-dose ultraviolet al (UVA1), but not UVA/UVB therapy, decreases IgE-binding cells in lesional skin of patients with atopic eczema. J Invest Dermatol. 1996;107(3):419–22.

    Article  CAS  PubMed  Google Scholar 

  72. Kroft EB, et al. Period of remission after treatment with UVA-1 in sclerodermic skin diseases. J Eur Acad Dermatol Venereol. 2008;22(7):839–44.

    Article  CAS  PubMed  Google Scholar 

  73. El-Mofty M, et al. Suggested mechanisms of action of UVA phototherapy in morphea: a molecular study. Photodermatol Photoimmunol Photomed. 2004;20(2):93–100.

    Article  CAS  PubMed  Google Scholar 

  74. Stege H, et al. High-dose UVA1 radiation therapy for localized scleroderma. J Am Acad Dermatol. 1997;36(6 Pt 1):938–44.

    Article  CAS  PubMed  Google Scholar 

  75. Kerscher M, Dirschka T, Volkenandt M. Treatment of localised scleroderma by UVA1 phototherapy. Lancet. 1995;346(8983):1166.

    Article  CAS  PubMed  Google Scholar 

  76. Andres C, et al. Successful ultraviolet al phototherapy in the treatment of localized scleroderma: a retrospective and prospective study. Br J Dermatol. 2010;162(2):445–7.

    Article  CAS  PubMed  Google Scholar 

  77. Jacobe HT, Cayce R, Nguyen J. UVA1 phototherapy is effective in darker skin: a review of 101 patients of Fitzpatrick skin types I-V. Br J Dermatol. 2008;159(3):691–6.

    Article  CAS  PubMed  Google Scholar 

  78. Kerscher M, et al. PUVA bath photochemotherapy for localized scleroderma. Evaluation of 17 consecutive patients. Arch Dermatol. 1996;132(11):1280–2.

    Article  CAS  PubMed  Google Scholar 

  79. Usmani N, et al. Photochemotherapy for localized morphoea: effect on clinical and molecular markers. Clin Exp Dermatol. 2008;33(6):698–704.

    Article  CAS  PubMed  Google Scholar 

  80. El-Mofty M, et al. Different low doses of broad-band UVA in the treatment of morphea and SSc. Photodermatol Photoimmunol Photomed. 2004;20(3):148–56.

    Article  CAS  PubMed  Google Scholar 

  81. El-Mofty M, et al. Low-dose broad-band UVA in morphea using a new method for evaluation. Photodermatol Photoimmunol Photomed. 2000;16(2):43–9.

    Article  CAS  PubMed  Google Scholar 

  82. Kreuter A, et al. A randomized controlled study of low-dose UVA1, medium-dose UVA1, and narrowband UVB phototherapy in the treatment of localized scleroderma. J Am Acad Dermatol. 2006;54(3):440–7.

    Article  PubMed  Google Scholar 

  83. clinicaltrials.gov. The influence of extracorporeal photopheresis on skin sclerosis. ClinicalTrials.gov ID NCT04752397. Sponsor Charite University, Berlin, Germany. Information provided by Ulrike Blume-Peytavi, MD, Charite University, Berlin, Germany (Responsible Party).

  84. Neustadter JH, et al. Extracorporeal photochemotherapy for generalized deep morphea. Arch Dermatol. 2009;145(2):127–30.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pileri A, et al. Generalized morphea successfully treated with extracorporeal photochemotherapy (ECP). Dermatol Online J. 2014;20(1):21258.

    Article  CAS  PubMed  Google Scholar 

  86. Uziel Y, et al. Methotrexate and corticosteroid therapy for pediatric localized scleroderma. J Pediatr. 2000;136(1):91–5.

    Article  CAS  PubMed  Google Scholar 

  87. Kreuter A, et al. Pulsed high-dose corticosteroids combined with low-dose methotrexate in severe localized scleroderma. Arch Dermatol. 2005;141(7):847–52.

    Article  CAS  PubMed  Google Scholar 

  88. Seyger MM, et al. Low-dose methotrexate in the treatment of widespread morphea. J Am Acad Dermatol. 1998;39(2 Pt 1):220–5.

    Article  CAS  PubMed  Google Scholar 

  89. Weibel L, et al. Prospective evaluation of treatment response and disease reversibility of paediatric localized scleroderma (morphoea) to steroids and methotrexate using multi-modal imaging. J Eur Acad Dermatol Venereol. 2020;34(7):1609–16.

    Article  CAS  PubMed  Google Scholar 

  90. Fitch PG, et al. Treatment of pediatric localized scleroderma with methotrexate. J Rheumatol. 2006;33(3):609–14.

    CAS  PubMed  Google Scholar 

  91. Weibel L, et al. Evaluation of methotrexate and corticosteroids for the treatment of localized scleroderma (morphoea) in children. Br J Dermatol. 2006;155(5):1013–20.

    Article  CAS  PubMed  Google Scholar 

  92. Kroft EB, et al. Effectiveness, side-effects and period of remission after treatment with methotrexate in localized scleroderma and related sclerotic skin diseases: an inception cohort study. Br J Dermatol. 2009;160(5):1075–82.

    Article  CAS  PubMed  Google Scholar 

  93. Martini G, et al. Successful treatment of severe or methotrexate-resistant juvenile localized scleroderma with mycophenolate mofetil. Rheumatology (Oxford). 2009;48(11):1410–3.

    Article  PubMed  Google Scholar 

  94. Martini G, et al. Mycophenolate mofetil for methotrexate-resistant juvenile localized scleroderma. Rheumatology (Oxford). 2021;60(3):1387–91.

    Article  CAS  PubMed  Google Scholar 

  95. Mertens JS, et al. Use of mycophenolate mofetil in patients with severe localized scleroderma resistant or intolerant to methotrexate. Acta Derm Venereol. 2016;96(4):510–3.

    Article  CAS  PubMed  Google Scholar 

  96. Arthur M, et al. Evaluation of the effectiveness and tolerability of mycophenolate mofetil and mycophenolic acid for the treatment of morphea. JAMA Dermatol. 2020;156(5):521–8.

    Article  PubMed  Google Scholar 

  97. McGaugh S, et al. Janus kinase inhibitors for treatment of morphea and SSc: a literature review. Dermatol Ther. 2022;35(6):e15437.

    Article  CAS  PubMed  Google Scholar 

  98. Aung WW, et al. Immunomodulating role of the JAKs inhibitor tofacitinib in a mouse model of bleomycin-induced scleroderma. J Dermatol Sci. 2021;101(3):174–84.

    Article  CAS  PubMed  Google Scholar 

  99. Damsky W, et al. Jak inhibition prevents bleomycin-induced fibrosis in mice and is effective in patients with morphea. J Invest Dermatol. 2020;140(7):1446–1449 e4.

    Article  CAS  PubMed  Google Scholar 

  100. Kim SR, et al. Treatment of generalized deep morphea and eosinophilic fasciitis with the Janus kinase inhibitor tofacitinib. JAAD Case Rep. 2018;4(5):443–5.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Scheinberg M, et al. Full histological and clinical regression of morphea with tofacitinib. Clin Rheumatol. 2020;39(9):2827–8.

    Article  PubMed  Google Scholar 

  102. Soh HJ, et al. Challenges in the diagnosis and treatment of disabling pansclerotic morphea of childhood: case-based review. Rheumatol Int. 2019;39(5):933–41.

    Article  PubMed  Google Scholar 

  103. Distler JH, et al. Imatinib mesylate reduces production of extracellular matrix and prevents development of experimental dermal fibrosis. Arthritis Rheum. 2007;56(1):311–22.

    Article  CAS  PubMed  Google Scholar 

  104. Alcantara-Reifs CM, et al. Imatinib treatment of therapy resistant generalized deep morphea. Dermatol Ther. 2015;28(5):271–3.

    Article  PubMed  Google Scholar 

  105. Coelho-Macias V, et al. Imatinib: a novel treatment approach for generalized morphea. Int J Dermatol. 2014;53(10):1299–302.

    Article  CAS  PubMed  Google Scholar 

  106. Inamo Y, Ochiai T. Successful combination treatment of a patient with progressive juvenile localized scleroderma (morphea) using imatinib, corticosteroids, and methotrexate. Pediatr Dermatol. 2013;30(6):e191–3.

    Article  PubMed  Google Scholar 

  107. Moinzadeh P, Krieg T, Hunzelmann N. Imatinib treatment of generalized localized scleroderma (morphea). J Am Acad Dermatol. 2010;63(5):e102–4.

    Article  PubMed  Google Scholar 

  108. clinicaltrials.gov. Efficacy and safety of imatinib in scleroderma (SCLEROGLIVEC). ClinicalTrials.gov ID NCT00479934. Sponsor: University Hospital, Bordeaux. Information provided by University Hospital, Bordeaux.

  109. Ponsoye M, et al. Treatment with abatacept prevents experimental dermal fibrosis and induces regression of established inflammation-driven fibrosis. Ann Rheum Dis. 2016;75(12):2142–9.

    Article  CAS  PubMed  Google Scholar 

  110. Adeeb F, et al. Early- and late-stage morphea subtypes with deep tissue involvement is treatable with abatacept (Orencia). Semin Arthritis Rheum. 2017;46(6):775–81.

    Article  CAS  PubMed  Google Scholar 

  111. Fage SW, Arvesen KB, Olesen AB. Abatacept improves skin-score and reduces lesions in patients with localized scleroderma: a case series. Acta Derm Venereol. 2018;98(4):465–6.

    Article  PubMed  Google Scholar 

  112. Li SC, et al. Preliminary evidence on abatacept safety and efficacy in refractory juvenile localized scleroderma. Rheumatology (Oxford). 2021;60(8):3817–25.

    Article  CAS  PubMed  Google Scholar 

  113. Stausbol-Gron B, et al. Abatacept is a promising treatment for patients with disseminated morphea profunda: presentation of two cases. Acta Derm Venereol. 2011;91(6):686–8.

    Article  PubMed  Google Scholar 

  114. Talia J, et al. A Case of recalcitrant linear morphea responding to subcutaneous abatacept. J Scleroderma Relat Disord. 2021;6(2):194–8.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kalampokis I, Yi BY, Smidt AC. Abatacept in the treatment of localized scleroderma: a pediatric case series and systematic literature review. Semin Arthritis Rheum. 2020;50(4):645–56.

    Article  CAS  PubMed  Google Scholar 

  116. Kromer C, et al. Response of recalcitrant generalized morphea to intravenous immunoglobulins (IVIg): three cases and a review of the literature. Eur J Dermatol. 2021;31(6):822–9.

    Article  PubMed  Google Scholar 

  117. Gutierrez D, et al. Eosinophilic fasciitis with concomitant morphea profunda treated with intravenous immunoglobulin. J Clin Rheumatol. 2021;27(8S):S500–1.

    Article  PubMed  Google Scholar 

  118. Kucukoglu R, Yilmaz Z, Kutlay A. Treatment of recalcitrant generalized morphea with mycophenolate mofetil and intravenous immunoglobulin. Dermatol Ther. 2018;31(5): e12674.

    Article  PubMed  Google Scholar 

  119. Cantarini L, et al. Intravenous immunoglobulins (IVIG) in SSc: a challenging yet promising future. Immunol Res. 2015;61(3):326–37.

    Article  CAS  PubMed  Google Scholar 

  120. Blank M, et al. The role of intravenous immunoglobulin therapy in mediating skin fibrosis in tight skin mice. Arthritis Rheum. 2002;46(6):1689–90.

    Article  CAS  PubMed  Google Scholar 

  121. Kajii M, et al. Prevention of excessive collagen accumulation by human intravenous immunoglobulin treatment in a murine model of bleomycin-induced scleroderma. Clin Exp Immunol. 2011;163(2):235–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kudo H, et al. Intravenous immunoglobulin treatment recovers the down-regulated levels of Th1 cytokines in the sera and skin of scleroderma patients. J Dermatol Sci. 2013;69(1):77–80.

    Article  CAS  PubMed  Google Scholar 

  123. Johnson BZ, et al. The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines. 2020;8(5):101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Blaise M, et al. Tocilizumab for corticosteroid-refractory immune checkpoint inhibitor-induced generalized morphea. JAMA Dermatol. 2023;159(1):112–4.

    Article  PubMed  Google Scholar 

  125. Lonowski S, et al. Tocilizumab for refractory morphea in adults: a case series. JAAD Case Rep. 2022;30:27–9.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lythgoe H, et al. Tocilizumab as a potential therapeutic option for children with severe, refractory juvenile localized scleroderma. Rheumatology (Oxford). 2018;57(2):398–401.

    Article  PubMed  Google Scholar 

  127. Martini G, et al. Tocilizumab in two children with pansclerotic morphoea: a hopeful therapy for refractory cases? Clin Exp Rheumatol. 2017;35(Suppl 106 (4)):211–3.

    PubMed  Google Scholar 

  128. Zhang A, Nocton J, Chiu Y. A case of pansclerotic morphea treated with tocilizumab. JAMA Dermatol. 2019;155(3):388–9.

    Article  PubMed  Google Scholar 

  129. Magro CM, et al. Linear scleroderma “en coup de sabre” with extensive brain involvement-Clinicopathologic correlations and response to anti-Interleukin-6 therapy. Orphanet J Rare Dis. 2019;14(1):110.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  130. Quintarelli L, et al. Unilateral generalised morphea successfully treated with rituximab and mycophenolate mofetil. Clin Exp Rheumatol. 2021;39(6):1449–50.

    Article  PubMed  Google Scholar 

  131. Chimenti MS, et al. Resolution with rituximab of localized scleroderma occurring during etanercept treatment in a patient with rheumatoid arthritis. Eur J Dermatol. 2013;23(2):273–4.

    Article  PubMed  Google Scholar 

  132. Traboulsi D, et al. Morphea associated with primary biliary cirrhosis and Waldenstrom macroglobulinemia: response to rituximab. JAAD Case Rep. 2018;4(8):784–7.

    Article  PubMed  PubMed Central  Google Scholar 

  133. clinicaltrials.gov. A protocol based treatment for debilitating fibrosing skin disorders with (anti-CD 20), rituximab, evaluating safety and efficacy.

  134. clinicaltrials.gov. Clinical trial to evaluate efficacy and safety of dupilumab in localized scleroderma (DupiMorph).

  135. Bukiri H, Volkmann ER. Current advances in the treatment of SSc. Curr Opin Pharmacol. 2022;64: 102211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wenzel D, et al. Upcoming treatments for morphea. Immun Inflamm Dis. 2021;9(4):1101–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Fett.

Ethics declarations

Funding

Not applicable.

Conflict of interest

Not applicable.

Availability of data and materials

Not applicable.

Ethics approval

Not applicable.

Patient consent to participate/publish

Not applicable.

Code availability

Not applicable.

Author contributions

Dr. Teske wrote the entire section on morphea. Dr. Fett wrote the entire section on SSc. Both Drs. Teske and Fett edited the entire manuscript as well as read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teske, N., Fett, N. Recent Advances in Treatment of Systemic Sclerosis and Morphea. Am J Clin Dermatol 25, 213–226 (2024). https://doi.org/10.1007/s40257-023-00831-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-023-00831-2

Navigation