Skip to main content

Advertisement

Log in

Clinical Treatment Options in Scleroderma: Recommendations and Comprehensive Review

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

There are two major clinical subsets of scleroderma: (i) systemic sclerosis (SSc) is a complex systemic autoimmune disorder characterized by inflammation, vasculopathy, and excessive fibrosis of the skin and multiple internal organs and (ii) localized scleroderma (LoS), also known as morphea, is confined to the skin and/or subcutaneous tissues resulting in collagen deposition and subsequent fibrosis. SSc is rare but is associated with significant morbidity and mortality compared with other rheumatic diseases. Fatal outcomes in SSc often originate from organ complications of the disease, such as lung fibrosis, pulmonary artery hypertension (PAH), and scleroderma renal crisis (SRC). Current treatment modalities in SSc have focused on targeting vascular damage, fibrosis, and regulation of inflammation as well as autoimmune responses. Some drugs previously used in an attempt to suppress fibrosis, like D-penicillamine (D-Pen) or colchicine, have been disappointing in clinical practice despite anecdotal evidence of their advantages. Some canonical medications, including glucocorticoids, immunosuppressants, and vasodilators, have had some success in treating various manifestations in SSc patients. Increasing evidence suggests that some biologic agents targeting collagen, cytokines, and cell surface molecules might have promising therapeutic effects in SSc. In recent years, hematopoietic stem cell transplantation (HSCT), mostly autologous, has made great progress as a promising treatment option in severe and refractory SSc. Due to the complexity and heterogeneity of SSc, there are currently no optimal treatments for all aspects of the disease. As for LoS, local skin-targeted therapy is generally used, including topical application of glucocorticoids or other immunomodulatory ointments and ultraviolet (UV) irradiation. In addition, systemic immunosuppressants are also utilized in several forms of LoS. Here, we comprehensively discuss current treatment options for scleroderma, encompassing old, new, and future potential treatment options. In addition, we summarize data from new clinical trials that have the potential to modify the disease process and improve long-term outcomes in SSc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vanhaecke A, De Schepper S, Paolino S, Heeman L, Callens H, Gutermuth J, Nguyen S, Cutolo M, Smith V (2020) Coexistence of systemic and localized scleroderma: a systematic literature review and observational cohort study. Rheumatology (Oxford). https://doi.org/10.1093/rheumatology/keaa297

    Article  Google Scholar 

  2. Barnes J, Mayes MD (2012) Epidemiology of systemic sclerosis: incidence, prevalence, survival, risk factors, malignancy, and environmental triggers. Curr Opin Rheumatol 24(2):165–170. https://doi.org/10.1097/BOR.0b013e32834ff2e8

    Article  PubMed  Google Scholar 

  3. Adigun R, Goyal A, Bansal P, Hariz A (2020) Systemic Sclerosis (CREST syndrome). In: StatPearls. Treasure Island (FL)

  4. Allanore Y, Simms R, Distler O, Trojanowska M, Pope J, Denton CP, Varga J (2015) Systemic sclerosis. Nat Rev Dis Primers 1:15002. https://doi.org/10.1038/nrdp.2015.2

    Article  PubMed  Google Scholar 

  5. De Lauretis A, Sestini P, Pantelidis P, Hoyles R, Hansell DM, Goh NS, Zappala CJ, Visca D, Maher TM, Denton CP, Ong VH, Abraham DJ, Kelleher P, Hector L, Wells AU, Renzoni EA (2013) Serum interleukin 6 is predictive of early functional decline and mortality in interstitial lung disease associated with systemic sclerosis. J Rheumatol 40(4):435–446. https://doi.org/10.3899/jrheum.120725

    Article  CAS  PubMed  Google Scholar 

  6. Kreuter A, Krieg T, Worm M, Wenzel J, Moinzadeh P, Kuhn A, Aberer E, Scharffetter-Kochanek K, Horneff G, Reil E, Weberschock T, Hunzelmann N (2016) German guidelines for the diagnosis and therapy of localized scleroderma. J Dtsch Dermatol Ges 14(2):199–216. https://doi.org/10.1111/ddg.12724

    Article  PubMed  Google Scholar 

  7. Mertens JS, de Jong E, van den Hoogen LL, Wienke J, Thurlings RM, Seyger MMB, Hoppenreijs E, Wijngaarde CA, van Vlijmen-Willems I, van den Bogaard E, Giovannone B, van Wijk F, van Royen-Kerkhof A, Marut W, Radstake TRD (2019) The identification of CCL18 as biomarker of disease activity in localized scleroderma. J Autoimmun 101:86–93. https://doi.org/10.1016/j.jaut.2019.04.008

    Article  CAS  PubMed  Google Scholar 

  8. Chouri E, Servaas NH, Bekker CPJ, Affandi AJ, Cossu M, Hillen MR, Angiolilli C, Mertens JS, van den Hoogen LL, Silva-Cardoso S, van der Kroef M, Vazirpanah N, Wichers CGK, Carvalheiro T, Blokland SLM, Giovannone B, Porretti L, Marut W, Vigone B, van Roon JAG, Beretta L, Rossato M, Radstake T (2018) Serum microRNA screening and functional studies reveal miR-483-5p as a potential driver of fibrosis in systemic sclerosis. J Autoimmun 89:162–170. https://doi.org/10.1016/j.jaut.2017.12.015

    Article  CAS  PubMed  Google Scholar 

  9. Tsou PS, Sawalha AH (2017) Unfolding the pathogenesis of scleroderma through genomics and epigenomics. J Autoimmun 83:73–94. https://doi.org/10.1016/j.jaut.2017.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bossini-Castillo L, Lopez-Isac E, Martin J (2015) Immunogenetics of systemic sclerosis: defining heritability, functional variants and shared-autoimmunity pathways. J Autoimmun 64:53–65. https://doi.org/10.1016/j.jaut.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  11. Pearson DR, Werth VP, Pappas-Taffer L (2018) Systemic sclerosis: current concepts of skin and systemic manifestations. Clin Dermatol 36(4):459–474. https://doi.org/10.1016/j.clindermatol.2018.04.004

    Article  PubMed  Google Scholar 

  12. Steen VD (2005) Autoantibodies in systemic sclerosis. Semin Arthritis Rheum 35(1):35–42. https://doi.org/10.1016/j.semarthrit.2005.03.005

    Article  CAS  PubMed  Google Scholar 

  13. Hudson M, Fritzler MJ (2014) Diagnostic criteria of systemic sclerosis. J Autoimmun 48–49:38–41. https://doi.org/10.1016/j.jaut.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  14. Katsiari CG, Simopoulou T, Alexiou I, Sakkas LI (2018) Immunotherapy of systemic sclerosis. Hum Vaccin Immunother 14(11):2559–2567. https://doi.org/10.1080/21645515.2018.1491508

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dellaripa PF (2018) Interstitial lung disease in the connective tissue diseases; a paradigm shift in diagnosis and treatment. Clin Immunol 186:71–73. https://doi.org/10.1016/j.clim.2017.09.015

    Article  CAS  PubMed  Google Scholar 

  16. Steen VD (2003) Scleroderma renal crisis. Rheum Dis Clin North Am 29(2):315–333. https://doi.org/10.1016/s0889-857x(03)00016-4

    Article  PubMed  Google Scholar 

  17. Kowal-Bielecka O, Fransen J, Avouac J, Becker M, Kulak A, Allanore Y, Distler O, Clements P, Cutolo M, Czirjak L, Damjanov N, Del Galdo F, Denton CP, Distler JHW, Foeldvari I, Figelstone K, Frerix M, Furst DE, Guiducci S, Hunzelmann N, Khanna D, Matucci-Cerinic M, Herrick AL, van den Hoogen F, van Laar JM, Riemekasten G, Silver R, Smith V, Sulli A, Tarner I, Tyndall A, Welling J, Wigley F, Valentini G, Walker UA, Zulian F, Muller-Ladner U, Coauthors E (2017) Update of EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis 76(8):1327–1339. https://doi.org/10.1136/annrheumdis-2016-209909

    Article  PubMed  Google Scholar 

  18. Iudici M (2017) What should clinicians know about the use of glucocorticoids in systemic sclerosis? Mod Rheumatol 27(6):919–923. https://doi.org/10.1080/14397595.2016.1270796

    Article  PubMed  Google Scholar 

  19. Kowal-Bielecka O, Landewe R, Avouac J, Chwiesko S, Miniati I, Czirjak L, Clements P, Denton C, Farge D, Fligelstone K, Foldvari I, Furst DE, Muller-Ladner U, Seibold J, Silver RM, Takehara K, Toth BG, Tyndall A, Valentini G, van den Hoogen F, Wigley F, Zulian F, Matucci-Cerinic M, Co-Authors E (2009) EULAR recommendations for the treatment of systemic sclerosis: a report from the EULAR Scleroderma Trials and Research group (EUSTAR). Ann Rheum Dis 68(5):620–628. https://doi.org/10.1136/ard.2008.096677

    Article  CAS  PubMed  Google Scholar 

  20. Fernandez Morales A, Iniesta N, Fernandez-Codina A, Vaz de Cunha J, Perez Romero T, Hurtado Garcia R, Simeon-Aznar CP, Fonollosa V, Cervera R, Espinosa G (2017) Cardiac tamponade and severe pericardial effusion in systemic sclerosis: report of nine patients and review of the literature. Int J Rheum Dis 20(10):1582–1592. https://doi.org/10.1111/1756-185X.12952

    Article  PubMed  Google Scholar 

  21. Leng XM, Sun XF, Zhang X, Zhang W, Li MT, Zeng XF (2012) Systemic sclerosis with portal hypertensive ascites responded to corticosteroid treatment. Chin Med J (Engl) 125(13):2390–2392

    Google Scholar 

  22. Adler S, Huscher D, Siegert E, Allanore Y, Czirjak L, DelGaldo F, Denton CP, Distler O, Frerix M, Matucci-Cerinic M, Mueller-Ladner U, Tarner IH, Valentini G, Walker UA, Villiger PM, Riemekasten G, network Ec-wobotDprgwtE (2018) Systemic sclerosis associated interstitial lung disease - individualized immunosuppressive therapy and course of lung function: results of the EUSTAR group. Arthritis Res Ther 20(1):17. https://doi.org/10.1186/s13075-018-1517-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roth MD, Tseng CH, Clements PJ, Furst DE, Tashkin DP, Goldin JG, Khanna D, Kleerup EC, Li N, Elashoff D, Elashoff RM, Scleroderma Lung Study Research G (2011) Predicting treatment outcomes and responder subsets in scleroderma-related interstitial lung disease. Arthritis Rheum 63(9):2797–2808. https://doi.org/10.1002/art.30438

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fernandez-Codina A, Walker KM, Pope JE, Scleroderma Algorithm G (2018) Treatment algorithms for systemic sclerosis according to experts. Arthritis Rheumatol 70(11):1820–1828. https://doi.org/10.1002/art.40560

    Article  CAS  PubMed  Google Scholar 

  25. Mendoza FA, Lee-Ching C, Jimenez SA (2020) Recurrence of progressive skin involvement following discontinuation or dose reduction of mycophenolate mofetil treatment in patients with diffuse systemic sclerosis. Semin Arthritis Rheum 50(1):135–139. https://doi.org/10.1016/j.semarthrit.2019.06.012

    Article  CAS  PubMed  Google Scholar 

  26. Tashkin DP, Roth MD, Clements PJ, Furst DE, Khanna D, Kleerup EC, Goldin J, Arriola E, Volkmann ER, Kafaja S, Silver R, Steen V, Strange C, Wise R, Wigley F, Mayes M, Riley DJ, Hussain S, Assassi S, Hsu VM, Patel B, Phillips K, Martinez F, Golden J, Connolly MK, Varga J, Dematte J, Hinchcliff ME, Fischer A, Swigris J, Meehan R, Theodore A, Simms R, Volkov S, Schraufnagel DE, Scholand MB, Frech T, Molitor JA, Highland K, Read CA, Fritzler MJ, Kim GHJ, Tseng CH, Elashoff RM, Sclerodema Lung Study III (2016) Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): a randomised controlled, double-blind, parallel group trial. Lancet Respir Med 4(9):708–719. https://doi.org/10.1016/S2213-2600(16)30152-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Daoussis D, Liossis SN (2019) Treatment of systemic sclerosis associated fibrotic manifestations: current options and future directions. Mediterr J Rheumatol 30(1):33–37. https://doi.org/10.31138/mjr.30.1.33

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hoyles RK, Ellis RW, Wellsbury J, Lees B, Newlands P, Goh NS, Roberts C, Desai S, Herrick AL, McHugh NJ, Foley NM, Pearson SB, Emery P, Veale DJ, Denton CP, Wells AU, Black CM, du Bois RM (2006) A multicenter, prospective, randomized, double-blind, placebo-controlled trial of corticosteroids and intravenous cyclophosphamide followed by oral azathioprine for the treatment of pulmonary fibrosis in scleroderma. Arthritis Rheum 54(12):3962–3970. https://doi.org/10.1002/art.22204

    Article  CAS  PubMed  Google Scholar 

  29. Zheng JN, Yang QR, Zhu GQ, Pan L, Xia JX, Wang Q (2020) Comparative efficacy and safety of immunosuppressive therapies for systemic sclerosis related interstitial lung disease: a Bayesian network analysis. Mod Rheumatol 30(4):687–695. https://doi.org/10.1080/14397595.2019.1640343

    Article  CAS  PubMed  Google Scholar 

  30. Herrick AL, Pan X, Peytrignet S, Lunt M, Hesselstrand R, Mouthon L, Silman A, Brown E, Czirjak L, Distler JHW, Distler O, Fligelstone K, Gregory WJ, Ochiel R, Vonk M, Ancuta C, Ong VH, Farge D, Hudson M, Matucci-Cerinic M, Balbir-Gurman A, Midtvedt O, Jordan AC, Jobanputra P, Stevens W, Moinzadeh P, Hall FC, Agard C, Anderson ME, Diot E, Madhok R, Akil M, Buch MH, Chung L, Damjanov N, Gunawardena H, Lanyon P, Ahmad Y, Chakravarty K, Jacobsen S, MacGregor AJ, McHugh N, Muller-Ladner U, Riemekasten G, Becker M, Roddy J, Carreira PE, Fauchais AL, Hachulla E, Hamilton J, Inanc M, McLaren JS, van Laar JM, Pathare S, Proudman S, Rudin A, Sahhar J, Coppere B, Serratrice C, Sheeran T, Veale DJ, Grange C, Trad GS, Denton CP (2017) Treatment outcome in early diffuse cutaneous systemic sclerosis: the European Scleroderma Observational Study (ESOS). Ann Rheum Dis 76(7):1207–1218. https://doi.org/10.1136/annrheumdis-2016-210503

    Article  CAS  PubMed  Google Scholar 

  31. Worrell JC, O’Reilly S (2020) Bi-directional communication: conversations between fibroblasts and immune cells in systemic sclerosis. J Autoimmun 113:102526. https://doi.org/10.1016/j.jaut.2020.102526

    Article  CAS  PubMed  Google Scholar 

  32. Gordon JK, Martyanov V, Franks JM, Bernstein EJ, Szymonifka J, Magro C, Wildman HF, Wood TA, Whitfield ML, Spiera RF (2018) Belimumab for the treatment of early diffuse systemic sclerosis: results of a randomized, double-blind, placebo-controlled. Pilot Trial Arthritis Rheumatol 70(2):308–316. https://doi.org/10.1002/art.40358

    Article  CAS  PubMed  Google Scholar 

  33. Elhai M, Boubaya M, Distler O, Smith V, Matucci-Cerinic M, Alegre Sancho JJ, Truchetet ME, Braun-Moscovici Y, Iannone F, Novikov PI, Lescoat A, Siegert E, Castellvi I, Airo P, Vettori S, De Langhe E, Hachulla E, Erler A, Ananieva L, Krusche M, Lopez-Longo FJ, Distler JHW, Hunzelmann N, Hoffmann-Vold AM, Riccieri V, Hsu VM, Pozzi MR, Ancuta C, Rosato E, Mihai C, Kuwana M, Saketkoo LA, Chizzolini C, Hesselstrand R, Ullman S, Yavuz S, Rednic S, Caimmi C, Bloch-Queyrat C, Allanorefor En, Y (2019) Outcomes of patients with systemic sclerosis treated with rituximab in contemporary practice: a prospective cohort study. Ann Rheum Dis 78(7):979–987. https://doi.org/10.1136/annrheumdis-2018-214816

    Article  CAS  PubMed  Google Scholar 

  34. Sircar G, Goswami RP, Sircar D, Ghosh A, Ghosh P (2018) Intravenous cyclophosphamide vs rituximab for the treatment of early diffuse scleroderma lung disease: open label, randomized, controlled trial. Rheumatology (Oxford) 57(12):2106–2113. https://doi.org/10.1093/rheumatology/key213

    Article  CAS  Google Scholar 

  35. Zulian F, Dal Pozzolo R, Meneghel A, Castaldi B, Marcolongo R, Caforio ALP, Martini G (2020) Rituximab for rapidly progressive juvenile systemic sclerosis. Rheumatology (Oxford). https://doi.org/10.1093/rheumatology/keaa193

    Article  Google Scholar 

  36. Jung JY, Kim JW, Kim HA, Suh CH (2019) Rituximab biosimilar CT-P10 for the treatment of rheumatoid arthritis. Expert Opin Biol Ther 19(10):979–986. https://doi.org/10.1080/14712598.2019.1665018

    Article  CAS  PubMed  Google Scholar 

  37. Campochiaro C, De Luca G, Lazzaroni MG, Zanatta E, Bosello SL, De Santis M, Cariddi A, Bruni C, Selmi C, Gremese E, Matucci-Cerinic M, Doria A, Airo P, Dagna L (2020) Safety and efficacy of rituximab biosimilar (CT-P10) in systemic sclerosis: an Italian multicentre study. Rheumatology (Oxford). https://doi.org/10.1093/rheumatology/keaa136

    Article  Google Scholar 

  38. Yao X, Huang J, Zhong H, Shen N, Faggioni R, Fung M, Yao Y (2014) Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol Ther 141(2):125–139. https://doi.org/10.1016/j.pharmthera.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  39. Desallais L, Avouac J, Frechet M, Elhai M, Ratsimandresy R, Montes M, Mouhsine H, Do H, Zagury JF, Allanore Y (2014) Targeting IL-6 by both passive or active immunization strategies prevents bleomycin-induced skin fibrosis. Arthritis Res Ther 16(4):R157. https://doi.org/10.1186/ar4672

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shima Y, Kuwahara Y, Murota H, Kitaba S, Kawai M, Hirano T, Arimitsu J, Narazaki M, Hagihara K, Ogata A, Katayama I, Kawase I, Kishimoto T, Tanaka T (2010) The skin of patients with systemic sclerosis softened during the treatment with anti-IL-6 receptor antibody tocilizumab. Rheumatology (Oxford) 49(12):2408–2412. https://doi.org/10.1093/rheumatology/keq275

    Article  CAS  Google Scholar 

  41. Khanna D, Denton CP, Jahreis A, van Laar JM, Frech TM, Anderson ME, Baron M, Chung L, Fierlbeck G, Lakshminarayanan S, Allanore Y, Pope JE, Riemekasten G, Steen V, Muller-Ladner U, Lafyatis R, Stifano G, Spotswood H, Chen-Harris H, Dziadek S, Morimoto A, Sornasse T, Siegel J, Furst DE (2016) Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet 387(10038):2630–2640. https://doi.org/10.1016/S0140-6736(16)00232-4

    Article  CAS  PubMed  Google Scholar 

  42. Khanna D, Denton CP, Lin CJF, van Laar JM, Frech TM, Anderson ME, Baron M, Chung L, Fierlbeck G, Lakshminarayanan S, Allanore Y, Pope JE, Riemekasten G, Steen V, Muller-Ladner U, Spotswood H, Burke L, Siegel J, Jahreis A, Furst DE (2018) Safety and efficacy of subcutaneous tocilizumab in systemic sclerosis: results from the open-label period of a phase II randomised controlled trial (faSScinate). Ann Rheum Dis 77(2):212–220. https://doi.org/10.1136/annrheumdis-2017-211682

    Article  CAS  PubMed  Google Scholar 

  43. Ponsoye M, Frantz C, Ruzehaji N, Nicco C, Elhai M, Ruiz B, Cauvet A, Pezet S, Brandely ML, Batteux F, Allanore Y, Avouac J (2016) Treatment with abatacept prevents experimental dermal fibrosis and induces regression of established inflammation-driven fibrosis. Ann Rheum Dis 75(12):2142–2149. https://doi.org/10.1136/annrheumdis-2015-208213

    Article  CAS  PubMed  Google Scholar 

  44. Sato S, Fujimoto M, Hasegawa M, Komura K, Yanaba K, Hayakawa I, Matsushita T, Takehara K (2004) Serum soluble CTLA-4 levels are increased in diffuse cutaneous systemic sclerosis. Rheumatology (Oxford) 43(10):1261–1266. https://doi.org/10.1093/rheumatology/keh303

    Article  CAS  Google Scholar 

  45. Khanna D, Spino C, Johnson S, Chung L, Whitfield ML, Denton CP, Berrocal V, Franks J, Mehta B, Molitor J, Steen VD, Lafyatis R, Simms RW, Gill A, Kafaja S, Frech TM, Hsu V, Domsic RT, Pope JE, Gordon JK, Mayes MD, Schiopu E, Young A, Sandorfi N, Park J, Hant FN, Bernstein EJ, Chatterjee S, Castelino FV, Ajam A, Wang Y, Wood T, Allanore Y, Matucci-Cerinic M, Distler O, Singer O, Bush E, Fox DA, Furst DE (2020) Abatacept in early diffuse cutaneous systemic sclerosis: results of a Phase II Investigator-Initiated, Multicenter, Double-Blind, Randomized Placebo-Controlled Trial. Arthritis Rheumatol 72(1):125–136. https://doi.org/10.1002/art.41055

    Article  CAS  PubMed  Google Scholar 

  46. Castellvi I, Elhai M, Bruni C, Airo P, Jordan S, Beretta L, Codullo V, Montecucco CM, Bokarewa M, Iannonne F, Balbir A, Hsu VM, Distler O, Matucci-Cerinic M, Allanore Y, for En (2020) Safety and effectiveness of abatacept in systemic sclerosis: The EUSTAR experience. Semin Arthritis Rheum. https://doi.org/10.1016/j.semarthrit.2019.12.004

    Article  PubMed  Google Scholar 

  47. Tian XP, Zhang X (2013) Gastrointestinal complications of systemic sclerosis. World J Gastroenterol 19(41):7062–7068. https://doi.org/10.3748/wjg.v19.i41.7062

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lafyatis R (2014) Transforming growth factor beta–at the centre of systemic sclerosis. Nat Rev Rheumatol 10(12):706–719. https://doi.org/10.1038/nrrheum.2014.137

    Article  CAS  PubMed  Google Scholar 

  49. Rice LM, Padilla CM, McLaughlin SR, Mathes A, Ziemek J, Goummih S, Nakerakanti S, York M, Farina G, Whitfield ML, Spiera RF, Christmann RB, Gordon JK, Weinberg J, Simms RW, Lafyatis R (2015) Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Invest 125(7):2795–2807. https://doi.org/10.1172/JCI77958

    Article  PubMed  PubMed Central  Google Scholar 

  50. Denton CP, Merkel PA, Furst DE, Khanna D, Emery P, Hsu VM, Silliman N, Streisand J, Powell J, Akesson A, Coppock J, Hoogen F, Herrick A, Mayes MD, Veale D, Haas J, Ledbetter S, Korn JH, Black CM, Seibold JR, Cat-192 Study G, Scleroderma Clinical Trials C (2007) Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum 56(1):323–333. https://doi.org/10.1002/art.22289

    Article  CAS  PubMed  Google Scholar 

  51. Blank M, Bashi T, Shoenfeld Y (2014) Idiotype-specific intravenous immunoglobulin (IVIG) for therapy of autoimmune diseases. Methods Mol Biol 1060:353–361. https://doi.org/10.1007/978-1-62703-586-6_18

    Article  CAS  PubMed  Google Scholar 

  52. Frech TM, Shanmugam VK, Shah AA, Assassi S, Gordon JK, Hant FN, Hinchcliff ME, Steen V, Khanna D, Kayser C, Domsic RT (2013) Treatment of early diffuse systemic sclerosis skin disease. Clin Exp Rheumatol 31(2 Suppl 76):166–171

    PubMed  PubMed Central  Google Scholar 

  53. Blank M, Levy Y, Amital H, Shoenfeld Y, Pines M, Genina O (2002) The role of intravenous immunoglobulin therapy in mediating skin fibrosis in tight skin mice. Arthritis Rheum 46(6):1689–1690. https://doi.org/10.1002/art.10363

    Article  CAS  PubMed  Google Scholar 

  54. Raja J, Nihtyanova SI, Murray CD, Denton CP, Ong VH (2016) Sustained benefit from intravenous immunoglobulin therapy for gastrointestinal involvement in systemic sclerosis. Rheumatology (Oxford) 55(1):115–119. https://doi.org/10.1093/rheumatology/kev318

    Article  Google Scholar 

  55. Sanges S, Riviere S, Mekinian A, Martin T, Le Quellec A, Chatelus E, Lescoat A, Jego P, Cazalets C, Quemeneur T, Le Gouellec N, Senet P, Frances C, Deroux A, Imbert B, Fain O, Boukari L, Sene T, Deligny C, Mathian A, Agard C, Pugnet G, Speca S, Dubucquoi S, Hatron PY, Hachulla E, Launay D (2017) Intravenous immunoglobulins in systemic sclerosis: data from a French nationwide cohort of 46 patients and review of the literature. Autoimmun Rev 16(4):377–384. https://doi.org/10.1016/j.autrev.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  56. Gomes JP, Santos L, Shoenfeld Y (2019) Intravenous immunoglobulin (IVIG) in the vanguard therapy of systemic sclerosis. Clin Immunol 199:25–28. https://doi.org/10.1016/j.clim.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  57. Trojanowska M (2008) Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology (Oxford) 47(Suppl 5):v2-4. https://doi.org/10.1093/rheumatology/ken265

    Article  CAS  Google Scholar 

  58. Gordon JK, Spiera RF (2010) Targeting tyrosine kinases: a novel therapeutic strategy for systemic sclerosis. Curr Opin Rheumatol 22(6):690–695. https://doi.org/10.1097/BOR.0b013e32833f1105

    Article  CAS  PubMed  Google Scholar 

  59. Spiera RF, Gordon JK, Mersten JN, Magro CM, Mehta M, Wildman HF, Kloiber S, Kirou KA, Lyman S, Crow MK (2011) Imatinib mesylate (Gleevec) in the treatment of diffuse cutaneous systemic sclerosis: results of a 1-year, phase IIa, single-arm, open-label clinical trial. Ann Rheum Dis 70(6):1003–1009. https://doi.org/10.1136/ard.2010.143974

    Article  CAS  PubMed  Google Scholar 

  60. Manley PW, Drueckes P, Fendrich G, Furet P, Liebetanz J, Martiny-Baron G, Mestan J, Trappe J, Wartmann M (1804) Fabbro D (2010) Extended kinase profile and properties of the protein kinase inhibitor nilotinib. Biochim Biophys Acta 3:445–453. https://doi.org/10.1016/j.bbapap.2009.11.008

    Article  CAS  Google Scholar 

  61. Kantarjian HM, Giles F, Gattermann N, Bhalla K, Alimena G, Palandri F, Ossenkoppele GJ, Nicolini FE, O’Brien SG, Litzow M, Bhatia R, Cervantes F, Haque A, Shou Y, Resta DJ, Weitzman A, Hochhaus A, le Coutre P (2007) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood 110(10):3540–3546. https://doi.org/10.1182/blood-2007-03-080689

    Article  CAS  PubMed  Google Scholar 

  62. Gordon JK, Martyanov V, Magro C, Wildman HF, Wood TA, Huang WT, Crow MK, Whitfield ML, Spiera RF (2015) Nilotinib (Tasigna) in the treatment of early diffuse systemic sclerosis: an open-label, pilot clinical trial. Arthritis Res Ther 17:213. https://doi.org/10.1186/s13075-015-0721-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martyanov V, Kim GJ, Hayes W, Du S, Ganguly BJ, Sy O, Lee SK, Bogatkevich GS, Schieven GL, Schiopu E, Marangoni RG, Goldin J, Whitfield ML, Varga J (2017) Novel lung imaging biomarkers and skin gene expression subsetting in dasatinib treatment of systemic sclerosis-associated interstitial lung disease. PLoS ONE 12(11):e0187580. https://doi.org/10.1371/journal.pone.0187580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wollin L, Wex E, Pautsch A, Schnapp G, Hostettler KE, Stowasser S, Kolb M (2015) Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J 45(5):1434–1445. https://doi.org/10.1183/09031936.00174914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Distler O, Highland KB, Gahlemann M, Azuma A, Fischer A, Mayes MD, Raghu G, Sauter W, Girard M, Alves M, Clerisme-Beaty E, Stowasser S, Tetzlaff K, Kuwana M, Maher TM, Investigators ST (2019) Nintedanib for Systemic Sclerosis-Associated Interstitial Lung Disease. N Engl J Med 380 (26):2518-2528. doi:https://doi.org/10.1056/NEJMoa1903076

  66. Seibold JR, Maher TM, Highland KB, Assassi S, Azuma A, Hummers LK, Costabel U, von Wangenheim U, Kohlbrenner V, Gahlemann M, Alves M, Distler O, investigators St (2020) Safety and tolerability of nintedanib in patients with systemic sclerosis-associated interstitial lung disease: data from the SENSCIS trial. Ann Rheum Dis. doi:https://doi.org/10.1136/annrheumdis-2020-217331

  67. Tamaki Z, Asano Y, Kubo M, Ihn H, Tada Y, Sugaya M, Kadono T, Sato S (2014) Effects of the immunosuppressant rapamycin on the expression of human alpha2(I) collagen and matrix metalloproteinase 1 genes in scleroderma dermal fibroblasts. J Dermatol Sci 74(3):251–259. https://doi.org/10.1016/j.jdermsci.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  68. Yanaba K (2016) Strategy for treatment of fibrosis in systemic sclerosis: present and future. J Dermatol 43(1):46–55. https://doi.org/10.1111/1346-8138.13026

    Article  PubMed  Google Scholar 

  69. Su TI, Khanna D, Furst DE, Danovitch G, Burger C, Maranian P, Clements PJ (2009) Rapamycin versus methotrexate in early diffuse systemic sclerosis: results from a randomized, single-blind pilot study. Arthritis Rheum 60(12):3821–3830. https://doi.org/10.1002/art.24986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Das H, Wang L, Kamath A, Bukowski JF (2001) Vgamma2Vdelta2 T-cell receptor-mediated recognition of aminobisphosphonates. Blood 98(5):1616–1618. https://doi.org/10.1182/blood.v98.5.1616

    Article  CAS  PubMed  Google Scholar 

  71. Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M (2000) Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96(2):384–392

    Article  CAS  Google Scholar 

  72. Riccieri V, Parisi G, Spadaro A, Scrivo R, Barone F, Moretti T, Bernardini G, Strom R, Taccari E, Valesini G (2005) Reduced circulating natural killer T cells and gamma/delta T cells in patients with systemic sclerosis. J Rheumatol 32(2):283–286

    CAS  PubMed  Google Scholar 

  73. Casetti R, Perretta G, Taglioni A, Mattei M, Colizzi V, Dieli F, D’Offizi G, Malkovsky M, Poccia F (2005) Drug-induced expansion and differentiation of V gamma 9V delta 2 T cells in vivo: the role of exogenous IL-2. J Immunol 175(3):1593–1598. https://doi.org/10.4049/jimmunol.175.3.1593

    Article  CAS  PubMed  Google Scholar 

  74. Takagi K, Takagi M, Kanangat S, Warrington KJ, Shigemitsu H, Postlethwaite AE (2005) Modulation of TNF-alpha gene expression by IFN-gamma and pamidronate in murine macrophages: regulation by STAT1-dependent pathways. J Immunol 174(4):1801–1810. https://doi.org/10.4049/jimmunol.174.4.1801

    Article  CAS  PubMed  Google Scholar 

  75. Carbone LD, Warrington KJ, Barrow KD, Pugazhenthi M, Watsky MA, Somes G, Ingels J, Postlethwaite AE (2006) Pamidronate infusion in patients with systemic sclerosis results in changes in blood mononuclear cell cytokine profiles. Clin Exp Immunol 146(3):371–380. https://doi.org/10.1111/j.1365-2249.2006.03216.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Khanna D, Allanore Y, Denton CP, Kuwana M, Matucci-Cerinic M, Pope JE, Atsumi T, Becvar R, Czirjak L, Hachulla E, Ishii T, Ishikawa O, Johnson SR, De Langhe E, Stagnaro C, Riccieri V, Schiopu E, Silver RM, Smith V, Steen V, Stevens W, Szucs G, Truchetet ME, Wosnitza M, Laapas K, de Oliveira PJ, Yao Z, Kramer F, Distler O (2020) Riociguat in patients with early diffuse cutaneous systemic sclerosis (RISE-SSc): randomised, double-blind, placebo-controlled multicentre trial. Ann Rheum Dis 79(5):618–625. https://doi.org/10.1136/annrheumdis-2019-216823

    Article  PubMed  Google Scholar 

  77. Distler O, Pope J, Denton C, Allanore Y, Matucci-Cerinic M, de Oliveira PJ, Khanna D (2017) RISE-SSc: Riociguat in diffuse cutaneous systemic sclerosis. Respir Med 122(Suppl 1):S14–S17. https://doi.org/10.1016/j.rmed.2016.09.011

    Article  PubMed  Google Scholar 

  78. Burt RK, Shah SJ, Dill K, Grant T, Gheorghiade M, Schroeder J, Craig R, Hirano I, Marshall K, Ruderman E, Jovanovic B, Milanetti F, Jain S, Boyce K, Morgan A, Carr J, Barr W (2011) Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 378(9790):498–506. https://doi.org/10.1016/S0140-6736(11)60982-3

    Article  CAS  PubMed  Google Scholar 

  79. van Laar JM, Farge D, Sont JK, Naraghi K, Marjanovic Z, Larghero J, Schuerwegh AJ, Marijt EW, Vonk MC, Schattenberg AV, Matucci-Cerinic M, Voskuyl AE, van de Loosdrecht AA, Daikeler T, Kotter I, Schmalzing M, Martin T, Lioure B, Weiner SM, Kreuter A, Deligny C, Durand JM, Emery P, Machold KP, Sarrot-Reynauld F, Warnatz K, Adoue DF, Constans J, Tony HP, Del Papa N, Fassas A, Himsel A, Launay D, Lo Monaco A, Philippe P, Quere I, Rich E, Westhovens R, Griffiths B, Saccardi R, van den Hoogen FH, Fibbe WE, Socie G, Gratwohl A, Tyndall A, Group EESS (2014) Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA 311(24):2490–2498. https://doi.org/10.1001/jama.2014.6368

    Article  CAS  PubMed  Google Scholar 

  80. Sullivan KM, Goldmuntz EA, Keyes-Elstein L, McSweeney PA, Pinckney A, Welch B, Mayes MD, Nash RA, Crofford LJ, Eggleston B, Castina S, Griffith LM, Goldstein JS, Wallace D, Craciunescu O, Khanna D, Folz RJ, Goldin J, St Clair EW, Seibold JR, Phillips K, Mineishi S, Simms RW, Ballen K, Wener MH, Georges GE, Heimfeld S, Hosing C, Forman S, Kafaja S, Silver RM, Griffing L, Storek J, LeClercq S, Brasington R, Csuka ME, Bredeson C, Keever-Taylor C, Domsic RT, Kahaleh MB, Medsger T, Furst DE, Investigators SS (2018) Myeloablative autologous stem-cell transplantation for severe scleroderma. N Engl J Med 378(1):35–47. https://doi.org/10.1056/nejmoa1703327

    Article  PubMed  PubMed Central  Google Scholar 

  81. Costa-Pereira KR, Guimaraes AL, Moraes DA, Dias JBE, Garcia JT, de Oliveira-Cardoso EA, Zombrilli A, Leopoldo V, Costa TM, Simoes BP, Oliveira MC (2019) Hematopoietic stem cell transplantation improves functional outcomes of systemic sclerosis patients. J Clin Rheumatol. https://doi.org/10.1097/RHU.0000000000001117

    Article  Google Scholar 

  82. van Laar JM, Naraghi K, Tyndall A (2015) Haematopoietic stem cell transplantation for poor-prognosis systemic sclerosis. Rheumatology (Oxford) 54(12):2126–2133. https://doi.org/10.1093/rheumatology/kev117

    Article  CAS  Google Scholar 

  83. Eyraud A, Scouppe L, Barnetche T, Forcade E, Lazaro E, Duffau P, Richez C, Seneschal J, Truchetet ME, Fhu A (2018) Efficacy and safety of autologous haematopoietic stem cell transplantation in systemic sclerosis: a systematic review of the literature. Br J Dermatol 178(3):650–658. https://doi.org/10.1111/bjd.15993

    Article  CAS  PubMed  Google Scholar 

  84. Tyndall A (2019) Hematopoietic stem cell transplantation for systemic sclerosis: review of current status. BioDrugs 33(4):401–409. https://doi.org/10.1007/s40259-019-00364-3

    Article  PubMed  Google Scholar 

  85. Maria AT, Toupet K, Maumus M, Fonteneau G, Le Quellec A, Jorgensen C, Guilpain P, Noel D (2016) Human adipose mesenchymal stem cells as potent anti-fibrosis therapy for systemic sclerosis. J Autoimmun 70:31–39. https://doi.org/10.1016/j.jaut.2016.03.013

    Article  CAS  PubMed  Google Scholar 

  86. Korman B (2019) Evolving insights into the cellular and molecular pathogenesis of fibrosis in systemic sclerosis. Transl Res 209:77–89. https://doi.org/10.1016/j.trsl.2019.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Galie N, Brundage BH, Ghofrani HA, Oudiz RJ, Simonneau G, Safdar Z, Shapiro S, White RJ, Chan M, Beardsworth A, Frumkin L, Barst RJ, Pulmonary Arterial H, Response to Tadalafil Study G (2009) Tadalafil therapy for pulmonary arterial hypertension. Circulation 119(22):2894–2903. https://doi.org/10.1161/CIRCULATIONAHA.108.839274

    Article  CAS  PubMed  Google Scholar 

  88. Clements PJ, Furst DE, Wong WK, Mayes M, White B, Wigley F, Weisman MH, Barr W, Moreland LW, Medsger TA Jr, Steen V, Martin RW, Collier D, Weinstein A, Lally E, Varga J, Weiner S, Andrews B, Abeles M, Seibold JR (1999) High-dose versus low-dose D-penicillamine in early diffuse systemic sclerosis: analysis of a two-year, double-blind, randomized, controlled clinical trial. Arthritis Rheum 42(6):1194–1203. https://doi.org/10.1002/1529-0131(199906)42:6%3c1194::AID-ANR16%3e3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  89. Jimenez SA, Freundlich B, Rosenbloom J (1984) Selective inhibition of human diploid fibroblast collagen synthesis by interferons. J Clin Invest 74(3):1112–1116. https://doi.org/10.1172/JCI111480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kahan A, Amor B, Menkes CJ, Strauch G (1989) Recombinant interferon-gamma in the treatment of systemic sclerosis. Am J Med 87(3):273–277. https://doi.org/10.1016/s0002-9343(89)80150-0

    Article  CAS  PubMed  Google Scholar 

  91. Freundlich B, Jimenez SA, Steen VD, Medsger TA Jr, Szkolnicki M, Jaffe HS (1992) Treatment of systemic sclerosis with recombinant interferon-gamma. A phase I/II clinical trial. Arthritis Rheum 35(10):1134–1142. https://doi.org/10.1002/art.1780351005

    Article  CAS  PubMed  Google Scholar 

  92. Black CM, Silman AJ, Herrick AI, Denton CP, Wilson H, Newman J, Pompon L, Shi-Wen X (1999) Interferon-alpha does not improve outcome at one year in patients with diffuse cutaneous scleroderma: results of a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 42(2):299–305. https://doi.org/10.1002/1529-0131(199902)42:2%3c299::AID-ANR12%3e3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  93. Unemori EN, Amento EP (1990) Relaxin modulates synthesis and secretion of procollagenase and collagen by human dermal fibroblasts. J Biol Chem 265(18):10681–10685

    Article  CAS  Google Scholar 

  94. Unemori EN, Bauer EA, Amento EP (1992) Relaxin alone and in conjunction with interferon-gamma decreases collagen synthesis by cultured human scleroderma fibroblasts. J Invest Dermatol 99(3):337–342. https://doi.org/10.1111/1523-1747.ep12616665

    Article  CAS  PubMed  Google Scholar 

  95. Seibold JR, Korn JH, Simms R, Clements PJ, Moreland LW, Mayes MD, Furst DE, Rothfield N, Steen V, Weisman M, Collier D, Wigley FM, Merkel PA, Csuka ME, Hsu V, Rocco S, Erikson M, Hannigan J, Harkonen WS, Sanders ME (2000) Recombinant human relaxin in the treatment of scleroderma. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 132(11):871–879. https://doi.org/10.7326/0003-4819-132-11-200006060-00004

    Article  CAS  PubMed  Google Scholar 

  96. Postlethwaite AE, Wong WK, Clements P, Chatterjee S, Fessler BJ, Kang AH, Korn J, Mayes M, Merkel PA, Molitor JA, Moreland L, Rothfield N, Simms RW, Smith EA, Spiera R, Steen V, Warrington K, White B, Wigley F, Furst DE (2008) A multicenter, randomized, double-blind, placebo-controlled trial of oral type I collagen treatment in patients with diffuse cutaneous systemic sclerosis: I. oral type I collagen does not improve skin in all patients, but may improve skin in late-phase disease. Arthritis Rheum 58(6):1810–1822. https://doi.org/10.1002/art.23501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McKown KM, Carbone LD, Bustillo J, Seyer JM, Kang AH, Postlethwaite AE (2000) Induction of immune tolerance to human type I collagen in patients with systemic sclerosis by oral administration of bovine type I collagen. Arthritis Rheum 43(5):1054–1061. https://doi.org/10.1002/1529-0131(200005)43:5%3c1054::AID-ANR14%3e3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  98. Granot I, Halevy O, Hurwitz S, Pines M (1993) Halofuginone: an inhibitor of collagen type I synthesis. Biochim Biophys Acta 1156(2):107–112. https://doi.org/10.1016/0304-4165(93)90123-p

    Article  CAS  PubMed  Google Scholar 

  99. Choi ET, Callow AD, Sehgal NL, Brown DM, Ryan US (1995) Halofuginone, a specific collagen type I inhibitor, reduces anastomotic intimal hyperplasia. Arch Surg 130(3):257–261. https://doi.org/10.1001/archsurg.1995.01430030027004

    Article  CAS  PubMed  Google Scholar 

  100. Nagler A, Pines M (1999) Topical treatment of cutaneous chronic graft versus host disease with halofuginone: a novel inhibitor of collagen type I synthesis. Transplantation 68(11):1806–1809. https://doi.org/10.1097/00007890-199912150-00027

    Article  CAS  PubMed  Google Scholar 

  101. Silman A, Harrison M, Brennan P (1995) Is it possible to reduce observer variability in skin score assessment of scleroderma? The ad hoc International Group on the Assessment of Disease Outcome in Scleroderma. J Rheumatol 22(7):1277–1280

    CAS  PubMed  Google Scholar 

  102. Carter NJ (2011) Pirfenidone: in idiopathic pulmonary fibrosis. Drugs 71(13):1721–1732. https://doi.org/10.2165/11207710-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  103. Saito M, Yamazaki M, Maeda T, Matsumura H, Setoguchi Y, Tsuboi R (2012) Pirfenidone suppresses keloid fibroblast-embedded collagen gel contraction. Arch Dermatol Res 304(3):217–222. https://doi.org/10.1007/s00403-011-1184-2

    Article  CAS  PubMed  Google Scholar 

  104. Khanna D, Albera C, Fischer A, Khalidi N, Raghu G, Chung L, Chen D, Schiopu E, Tagliaferri M, Seibold JR, Gorina E (2016) An Open-label, Phase II Study of the Safety and Tolerability of Pirfenidone in Patients with Scleroderma-associated Interstitial Lung Disease: the LOTUSS Trial. J Rheumatol 43(9):1672–1679. https://doi.org/10.3899/jrheum.151322

    Article  PubMed  Google Scholar 

  105. Acharya N, Sharma SK, Mishra D, Dhooria S, Dhir V, Jain S (2020) Efficacy and safety of pirfenidone in systemic sclerosis-related interstitial lung disease-a randomised controlled trial. Rheumatol Int 40(5):703–710. https://doi.org/10.1007/s00296-020-04565-w

    Article  CAS  PubMed  Google Scholar 

  106. Bernier C, Dreno B (2001) Minocycline. Ann Dermatol Venereol 128(5):627–637

    CAS  PubMed  Google Scholar 

  107. O’Dell JR, Blakely KW, Mallek JA, Eckhoff PJ, Leff RD, Wees SJ, Sems KM, Fernandez AM, Palmer WR, Klassen LW, Paulsen GA, Haire CE, Moore GF (2001) Treatment of early seropositive rheumatoid arthritis: a two-year, double-blind comparison of minocycline and hydroxychloroquine. Arthritis Rheum 44(10):2235–2241. https://doi.org/10.1002/1529-0131(200110)44:10%3c2235::aid-art385%3e3.0.co;2-a

    Article  CAS  PubMed  Google Scholar 

  108. Anderegg U, Prieb J, Hildebrandt G, Saalbach A (2002) Minocycline does not alter collagen type I metabolism of dermal fibroblasts in culture. Arch Dermatol Res 294(3):103–108. https://doi.org/10.1007/s00403-002-0300-8

    Article  CAS  PubMed  Google Scholar 

  109. Mayes MD, O’Donnell D, Rothfield NF, Csuka ME (2004) Minocycline is not effective in systemic sclerosis: results of an open-label multicenter trial. Arthritis Rheum 50(2):553–557. https://doi.org/10.1002/art.20036

    Article  CAS  PubMed  Google Scholar 

  110. Cohen H, Solomon V, Alferiev IS, Breuer E, Ornoy A, Patlas N, Eidelman N, Hagele G, Golomb G (1998) Bisphosphonates and tetracycline: experimental models for their evaluation in calcium-related disorders. Pharm Res 15(4):606–613. https://doi.org/10.1023/a:1011990129437

    Article  CAS  PubMed  Google Scholar 

  111. Robertson LP, Marshall RW, Hickling P (2003) Treatment of cutaneous calcinosis in limited systemic sclerosis with minocycline. Ann Rheum Dis 62(3):267–269. https://doi.org/10.1136/ard.62.3.267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pernis AB, Ricker E, Weng CH, Rozo C, Yi W (2016) Rho kinases in autoimmune diseases. Annu Rev Med 67:355–374. https://doi.org/10.1146/annurev-med-051914-022120

    Article  CAS  PubMed  Google Scholar 

  113. Zhou Q, Gensch C, Liao JK (2011) Rho-associated coiled-coil-forming kinases (ROCKs): potential targets for the treatment of atherosclerosis and vascular disease. Trends Pharmacol Sci 32(3):167–173. https://doi.org/10.1016/j.tips.2010.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Knipe RS, Tager AM, Liao JK (2015) The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis. Pharmacol Rev 67(1):103–117. https://doi.org/10.1124/pr.114.009381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bhattacharyya S, Wei J, Varga J (2011) Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol 8(1):42–54. https://doi.org/10.1038/nrrheum.2011.149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Akhmetshina A, Dees C, Pileckyte M, Szucs G, Spriewald BM, Zwerina J, Distler O, Schett G, Distler JH (2008) Rho-associated kinases are crucial for myofibroblast differentiation and production of extracellular matrix in scleroderma fibroblasts. Arthritis Rheum 58(8):2553–2564. https://doi.org/10.1002/art.23677

    Article  CAS  PubMed  Google Scholar 

  117. Shi J, Wei L (2013) Rho kinases in cardiovascular physiology and pathophysiology: the effect of fasudil. J Cardiovasc Pharmacol 62(4):341–354. https://doi.org/10.1097/FJC.0b013e3182a3718f

    Article  CAS  PubMed  Google Scholar 

  118. Fava A, Wung PK, Wigley FM, Hummers LK, Daya NR, Ghazarian SR, Boin F (2012) Efficacy of Rho kinase inhibitor fasudil in secondary Raynaud’s phenomenon. Arthritis Care Res (Hoboken) 64(6):925–929. https://doi.org/10.1002/acr.21622

    Article  CAS  Google Scholar 

  119. Gabrielli A, Avvedimento EV, Krieg T (2009) Scleroderma. N Engl J Med 360(19):1989–2003. https://doi.org/10.1056/NEJMra0806188

    Article  CAS  PubMed  Google Scholar 

  120. Matucci-Cerinic C, Nagaraja V, Prignano F, Kahaleh B, Bellando-Randone S (2018) The role of the dermatologist in Raynaud’s phenomenon: a clinical challenge. J Eur Acad Dermatol Venereol 32(7):1120–1127. https://doi.org/10.1111/jdv.14914

    Article  CAS  PubMed  Google Scholar 

  121. Roustit M, Blaise S, Allanore Y, Carpentier PH, Caglayan E, Cracowski JL (2013) Phosphodiesterase-5 inhibitors for the treatment of secondary Raynaud’s phenomenon: systematic review and meta-analysis of randomised trials. Ann Rheum Dis 72(10):1696–1699. https://doi.org/10.1136/annrheumdis-2012-202836

    Article  CAS  PubMed  Google Scholar 

  122. Fischer M, Reinhold B, Falck H, Torok M, Alexander K (1985) Topical nitroglycerin ointment in Raynaud’s phenomenon. Z Kardiol 74(5):298–302

    CAS  PubMed  Google Scholar 

  123. Teh LS, Manning J, Moore T, Tully MP, O’Reilly D, Jayson MI (1995) Sustained-release transdermal glyceryl trinitrate patches as a treatment for primary and secondary Raynaud’s phenomenon. Br J Rheumatol 34(7):636–641. https://doi.org/10.1093/rheumatology/34.7.636

    Article  CAS  PubMed  Google Scholar 

  124. Peterson LL, Vorhies C (1983) Raynaud’s syndrome. Treatment with sublingual administration of nitroglycerin, swinging arm maneuver, and biofeedback training. Arch Dermatol 119(5):396–399. https://doi.org/10.1001/archderm.119.5.396

    Article  CAS  PubMed  Google Scholar 

  125. Franks AG Jr (1982) Topical glyceryl trinitrate as adjunctive treatment in Raynaud’s disease. Lancet 1(8263):76–77. https://doi.org/10.1016/s0140-6736(82)90215-x

    Article  PubMed  Google Scholar 

  126. Hummers LK, Dugowson CE, Dechow FJ, Wise RA, Gregory J, Michalek J, Yenokyan G, McGready J, Wigley FM (2013) A multi-centre, blinded, randomised, placebo-controlled, laboratory-based study of MQX-503, a novel topical gel formulation of nitroglycerine, in patients with Raynaud phenomenon. Ann Rheum Dis 72(12):1962–1967. https://doi.org/10.1136/annrheumdis-2012-201536

    Article  CAS  PubMed  Google Scholar 

  127. Chung L, Shapiro L, Fiorentino D, Baron M, Shanahan J, Sule S, Hsu V, Rothfield N, Steen V, Martin RW, Smith E, Mayes M, Simms R, Pope J, Kahaleh B, Csuka ME, Gruber B, Collier D, Sweiss N, Gilbert A, Dechow FJ, Gregory J, Wigley FM (2009) MQX-503, a novel formulation of nitroglycerin, improves the severity of Raynaud’s phenomenon: a randomized, controlled trial. Arthritis Rheum 60(3):870–877. https://doi.org/10.1002/art.24351

    Article  CAS  PubMed  Google Scholar 

  128. Giuggioli D, Manfredi A, Colaci M, Lumetti F, Ferri C (2012) Scleroderma digital ulcers complicated by infection with fecal pathogens. Arthritis Care Res (Hoboken) 64(2):295–297. https://doi.org/10.1002/acr.20673

    Article  Google Scholar 

  129. Tingey T, Shu J, Smuczek J, Pope J (2013) Meta-analysis of healing and prevention of digital ulcers in systemic sclerosis. Arthritis Care Res (Hoboken) 65(9):1460–1471. https://doi.org/10.1002/acr.22018

    Article  CAS  Google Scholar 

  130. Korn JH, Mayes M, Matucci Cerinic M, Rainisio M, Pope J, Hachulla E, Rich E, Carpentier P, Molitor J, Seibold JR, Hsu V, Guillevin L, Chatterjee S, Peter HH, Coppock J, Herrick A, Merkel PA, Simms R, Denton CP, Furst D, Nguyen N, Gaitonde M, Black C (2004) Digital ulcers in systemic sclerosis: prevention by treatment with bosentan, an oral endothelin receptor antagonist. Arthritis Rheum 50(12):3985–3993. https://doi.org/10.1002/art.20676

    Article  CAS  PubMed  Google Scholar 

  131. Matucci-Cerinic M, Denton CP, Furst DE, Mayes MD, Hsu VM, Carpentier P, Wigley FM, Black CM, Fessler BJ, Merkel PA, Pope JE, Sweiss NJ, Doyle MK, Hellmich B, Medsger TA Jr, Morganti A, Kramer F, Korn JH, Seibold JR (2011) Bosentan treatment of digital ulcers related to systemic sclerosis: results from the RAPIDS-2 randomised, double-blind, placebo-controlled trial. Ann Rheum Dis 70(1):32–38. https://doi.org/10.1136/ard.2010.130658

    Article  CAS  PubMed  Google Scholar 

  132. Khanna D, Denton CP, Merkel PA, Krieg T, Le Brun FO, Marr A, Papadakis K, Pope J, Matucci-Cerinic M, Furst DE, Investigators D, Investigators D (2016) Effect of macitentan on the development of new ischemic digital ulcers in patients with systemic sclerosis: DUAL-1 and DUAL-2 Randomized Clinical Trials. JAMA 315(18):1975–1988. https://doi.org/10.1001/jama.2016.5258

    Article  CAS  PubMed  Google Scholar 

  133. Negrini S, Magnani O, Matucci-Cerinic M, Carignola R, Data V, Montabone E, Santaniello A, Adorni G, Murdaca G, Puppo F, Indiveri F, Della Rossa A, D’Ascanio A, Barsotti S, Giuggioli D, Ferri C, Lumetti F, Bosello SL, Canestrari G, Bellando Randone S, Bruni C, Guiducci S, Battaglia E, De Andres MI, Russo AA, Beretta L (2019) Iloprost use and medical management of systemic sclerosis-related vasculopathy in Italian tertiary referral centers: results from the PROSIT study. Clin Exp Med 19(3):357–366. https://doi.org/10.1007/s10238-019-00553-y

    Article  CAS  PubMed  Google Scholar 

  134. Hughes M, Alcacer-Pitarch B, Gheorghiu AM, Praino E, Sandler RD, Tavor Y, Bruni C, Matucci-Cerinic M (2020) Digital ulcer debridement in systemic sclerosis: a systematic literature review. Clin Rheumatol 39(3):805–811. https://doi.org/10.1007/s10067-019-04924-4

    Article  PubMed  Google Scholar 

  135. Bogoch ER, Gross DK (2005) Surgery of the hand in patients with systemic sclerosis: outcomes and considerations. J Rheumatol 32(4):642–648

    PubMed  Google Scholar 

  136. Guerra MG, Fonseca DGD, Samoes B, Videira T, Pinto P (2020) Is botulinum toxin useful in systemic sclerosis related peripheral vasculopathy? A literature review. Reumatol Clin. https://doi.org/10.1016/j.reuma.2020.04.006

    Article  PubMed  Google Scholar 

  137. Abou-Raya A, Abou-Raya S, Helmii M (2008) Statins: potentially useful in therapy of systemic sclerosis-related Raynaud’s phenomenon and digital ulcers. J Rheumatol 35(9):1801–1808

    CAS  PubMed  Google Scholar 

  138. Hughes M, Ong VH, Anderson ME, Hall F, Moinzadeh P, Griffiths B, Baildam E, Denton CP, Herrick AL (2015) Consensus best practice pathway of the UK Scleroderma Study Group: digital vasculopathy in systemic sclerosis. Rheumatology (Oxford) 54(11):2015–2024. https://doi.org/10.1093/rheumatology/kev201

    Article  CAS  Google Scholar 

  139. Steen VD, Medsger TA (2007) Changes in causes of death in systemic sclerosis, 1972–2002. Ann Rheum Dis 66(7):940–944. https://doi.org/10.1136/ard.2006.066068

    Article  PubMed  PubMed Central  Google Scholar 

  140. Galie N, Corris PA, Frost A, Girgis RE, Granton J, Jing ZC, Klepetko W, McGoon MD, McLaughlin VV, Preston IR, Rubin LJ, Sandoval J, Seeger W, Keogh A (2013) Updated treatment algorithm of pulmonary arterial hypertension. J Am Coll Cardiol 62(25 Suppl):D60-72. https://doi.org/10.1016/j.jacc.2013.10.031

    Article  PubMed  Google Scholar 

  141. Sobanski V, Launay D, Hachulla E, Humbert M (2016) Current approaches to the treatment of systemic-sclerosis-associated pulmonary arterial hypertension (SSc-PAH). Curr Rheumatol Rep 18(2):10. https://doi.org/10.1007/s11926-015-0560-x

    Article  CAS  PubMed  Google Scholar 

  142. Becker MO, Kill A, Kutsche M, Guenther J, Rose A, Tabeling C, Witzenrath M, Kuhl AA, Heidecke H, Ghofrani HA, Tiede H, Schermuly RT, Nickel N, Hoeper MM, Lukitsch I, Gollasch M, Kuebler WM, Bock S, Burmester GR, Dragun D, Riemekasten G (2014) Vascular receptor autoantibodies in pulmonary arterial hypertension associated with systemic sclerosis. Am J Respir Crit Care Med 190(7):808–817. https://doi.org/10.1164/rccm.201403-0442OC

    Article  CAS  PubMed  Google Scholar 

  143. Rhee RL, Gabler NB, Sangani S, Praestgaard A, Merkel PA, Kawut SM (2015) Comparison of treatment response in idiopathic and connective tissue disease-associated pulmonary arterial hypertension. Am J Respir Crit Care Med 192(9):1111–1117. https://doi.org/10.1164/rccm.201507-1456OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tapson VF, Torres F, Kermeen F, Keogh AM, Allen RP, Frantz RP, Badesch DB, Frost AE, Shapiro SM, Laliberte K, Sigman J, Arneson C, Galie N (2012) Oral treprostinil for the treatment of pulmonary arterial hypertension in patients on background endothelin receptor antagonist and/or phosphodiesterase type 5 inhibitor therapy (the FREEDOM-C study): a randomized controlled trial. Chest 142(6):1383–1390. https://doi.org/10.1378/chest.11-2212

    Article  CAS  PubMed  Google Scholar 

  145. El Yafawi R, Wirth JA (2017) What is the role of oral prostacyclin pathway medications in pulmonary arterial hypertension management? Curr Hypertens Rep 19(12):97. https://doi.org/10.1007/s11906-017-0796-0

    Article  CAS  PubMed  Google Scholar 

  146. Barst RJ, McGoon M, McLaughlin V, Tapson V, Rich S, Rubin L, Wasserman K, Oudiz R, Shapiro S, Robbins IM, Channick R, Badesch D, Rayburn BK, Flinchbaugh R, Sigman J, Arneson C, Jeffs R, Beraprost Study G (2003) Beraprost therapy for pulmonary arterial hypertension. J Am Coll Cardiol 41(12):2119–2125. https://doi.org/10.1016/s0735-1097(03)00463-7

    Article  CAS  PubMed  Google Scholar 

  147. Gaine S, Chin K, Coghlan G, Channick R, Di Scala L, Galie N, Ghofrani HA, Lang IM, McLaughlin V, Preiss R, Rubin LJ, Simonneau G, Sitbon O, Tapson VF, Hoeper MM (2017) Selexipag for the treatment of connective tissue disease-associated pulmonary arterial hypertension. Eur Respir J 50 (2). doi:https://doi.org/10.1183/13993003.02493-2016

  148. Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A, Pulido T, Frost A, Roux S, Leconte I, Landzberg M, Simonneau G (2002) Bosentan therapy for pulmonary arterial hypertension. N Engl J Med 346(12):896–903. https://doi.org/10.1056/NEJMoa012212

    Article  CAS  PubMed  Google Scholar 

  149. Pulido T, Adzerikho I, Channick RN, Delcroix M, Galie N, Ghofrani HA, Jansa P, Jing ZC, Le Brun FO, Mehta S, Mittelholzer CM, Perchenet L, Sastry BK, Sitbon O, Souza R, Torbicki A, Zeng X, Rubin LJ, Simonneau G, Investigators S (2013) Macitentan and morbidity and mortality in pulmonary arterial hypertension. N Engl J Med 369(9):809–818. https://doi.org/10.1056/NEJMoa1213917

    Article  CAS  PubMed  Google Scholar 

  150. Fischer A, Denton CP, Matucci-Cerinic M, Gillies H, Blair C, Tislow J, Nathan SD (2016) Ambrisentan response in connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) - a subgroup analysis of the ARIES-E clinical trial. Respir Med 117:254–263. https://doi.org/10.1016/j.rmed.2016.06.018

    Article  PubMed  Google Scholar 

  151. Badesch DB, Hill NS, Burgess G, Rubin LJ, Barst RJ, Galie N, Simonneau G, Group SS (2007) Sildenafil for pulmonary arterial hypertension associated with connective tissue disease. J Rheumatol 34(12):2417–2422

    PubMed  Google Scholar 

  152. Pellar RE, Pope JE (2017) Evidence-based management of systemic sclerosis: navigating recommendations and guidelines. Semin Arthritis Rheum 46(6):767–774. https://doi.org/10.1016/j.semarthrit.2016.12.003

    Article  PubMed  Google Scholar 

  153. Higuchi T, Kawaguchi Y, Takagi K, Tochimoto A, Ota Y, Katsumata Y, Ichida H, Hanaoka M, Kawasumi H, Tochihara M, Yamanaka H (2015) Sildenafil attenuates the fibrotic phenotype of skin fibroblasts in patients with systemic sclerosis. Clin Immunol 161(2):333–338. https://doi.org/10.1016/j.clim.2015.09.010

    Article  CAS  PubMed  Google Scholar 

  154. Humbert M, Coghlan JG, Ghofrani HA, Grimminger F, He JG, Riemekasten G, Vizza CD, Boeckenhoff A, Meier C, de Oliveira PJ, Denton CP (2017) Riociguat for the treatment of pulmonary arterial hypertension associated with connective tissue disease: results from PATENT-1 and PATENT-2. Ann Rheum Dis 76(2):422–426. https://doi.org/10.1136/annrheumdis-2015-209087

    Article  CAS  PubMed  Google Scholar 

  155. Coghlan JG, Galie N, Barbera JA, Frost AE, Ghofrani HA, Hoeper MM, Kuwana M, McLaughlin VV, Peacock AJ, Simonneau G, Vachiery JL, Blair C, Gillies H, Miller KL, Harris JHN, Langley J, Rubin LJ, investigators A (2017) Initial combination therapy with ambrisentan and tadalafil in connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH): subgroup analysis from the AMBITION trial. Ann Rheum Dis 76(7):1219–1227. https://doi.org/10.1136/annrheumdis-2016-210236

    Article  CAS  PubMed  Google Scholar 

  156. Lammi MR, Mathai SC, Saketkoo LA, Domsic RT, Bojanowski C, Furst DE, Steen VD, Pulmonary Hypertension A, Recognition of Outcomes in Scleroderma I (2016) Association between initial oral therapy and outcomes in systemic sclerosis-related pulmonary arterial hypertension. Arthritis Rheumatol 68(3):740–748. https://doi.org/10.1002/art.39478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hudson M, Baron M, Tatibouet S, Furst DE, Khanna D, International Scleroderma Renal Crisis Study I (2014) Exposure to ACE inhibitors prior to the onset of scleroderma renal crisis-results from the International Scleroderma Renal Crisis Survey. Semin Arthritis Rheum 43(5):666–672. https://doi.org/10.1016/j.semarthrit.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  158. Butikofer L, Varisco PA, Distler O, Kowal-Bielecka O, Allanore Y, Riemekasten G, Villiger PM, Adlercollaborators E, S (2020) ACE inhibitors in SSc patients display a risk factor for scleroderma renal crisis-a EUSTAR analysis. Arthritis Res Ther 22(1):59. https://doi.org/10.1186/s13075-020-2141-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cheung WY, Gibson IW, Rush D, Jeffery J, Karpinski M (2005) Late recurrence of scleroderma renal crisis in a renal transplant recipient despite angiotensin II blockade. Am J Kidney Dis 45(5):930–934. https://doi.org/10.1053/j.ajkd.2005.01.007

    Article  PubMed  Google Scholar 

  160. Denton CP, Khanna D (2017) Systemic sclerosis. Lancet 390(10103):1685–1699. https://doi.org/10.1016/S0140-6736(17)30933-9

    Article  PubMed  Google Scholar 

  161. Blagojevic J, Legendre P, Matucci-Cerinic M, Mouthon L (2019) Is there today a place for corticosteroids in the treatment of scleroderma? Autoimmun Rev 18(12):102403. https://doi.org/10.1016/j.autrev.2019.102403

    Article  CAS  PubMed  Google Scholar 

  162. Zwischenberger BA, Jacobe HT (2011) A systematic review of morphea treatments and therapeutic algorithm. J Am Acad Dermatol 65(5):925–941. https://doi.org/10.1016/j.jaad.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  163. Distler O, Cozzio A (2016) Systemic sclerosis and localized scleroderma–current concepts and novel targets for therapy. Semin Immunopathol 38(1):87–95. https://doi.org/10.1007/s00281-015-0551-z

    Article  CAS  PubMed  Google Scholar 

  164. Kroft EB, Groeneveld TJ, Seyger MM, de Jong EM (2009) Efficacy of topical tacrolimus 0.1% in active plaque morphea: randomized, double-blind, emollient-controlled pilot study. Am J Clin Dermatol 10(3):181–187. https://doi.org/10.2165/00128071-200910030-00004

    Article  PubMed  Google Scholar 

  165. Cunningham BB, Landells ID, Langman C, Sailer DE, Paller AS (1998) Topical calcipotriene for morphea/linear scleroderma. J Am Acad Dermatol 39(2 Pt 1):211–215. https://doi.org/10.1016/s0190-9622(98)70077-5

    Article  CAS  PubMed  Google Scholar 

  166. Pope E, Doria AS, Theriault M, Mohanta A, Laxer RM (2011) Topical imiquimod 5% cream for pediatric plaque morphea: a prospective, multiple-baseline, open-label pilot study. Dermatology 223(4):363–369. https://doi.org/10.1159/000335560

    Article  CAS  PubMed  Google Scholar 

  167. Gordon Spratt EA, Gorcey LV, Soter NA, Brauer JA (2015) Phototherapy, photodynamic therapy and photopheresis in the treatment of connective-tissue diseases: a review. Br J Dermatol 173(1):19–30. https://doi.org/10.1111/bjd.13544

    Article  CAS  PubMed  Google Scholar 

  168. Kreuter A, Hyun J, Stucker M, Sommer A, Altmeyer P, Gambichler T (2006) A randomized controlled study of low-dose UVA1, medium-dose UVA1, and narrowband UVB phototherapy in the treatment of localized scleroderma. J Am Acad Dermatol 54(3):440–447. https://doi.org/10.1016/j.jaad.2005.11.1063

    Article  PubMed  Google Scholar 

  169. Vasquez R, Jabbar A, Khan F, Buethe D, Ahn C, Jacobe H (2014) Recurrence of morphea after successful ultraviolet al phototherapy: a cohort study. J Am Acad Dermatol 70(3):481–488. https://doi.org/10.1016/j.jaad.2013.10.018

    Article  PubMed  Google Scholar 

  170. Strong AL, Rubin JP, Kozlow JH, Cederna PS (2019) Fat grafting for the treatment of scleroderma. Plast Reconstr Surg 144(6):1498–1507. https://doi.org/10.1097/PRS.0000000000006291

    Article  CAS  PubMed  Google Scholar 

  171. Roh MR, Jung JY, Chung KY (2008) Autologous fat transplantation for depressed linear scleroderma-induced facial atrophic scars. Dermatol Surg 34(12):1659–1665. https://doi.org/10.1111/j.1524-4725.2008.34343.x

    Article  CAS  PubMed  Google Scholar 

  172. Barin EZ, Cinal H, Cakmak MA, Tan O (2016) Treatment of linear scleroderma (en Coup de Sabre) with dermal fat grafting. J Cutan Med Surg 20(3):269–271. https://doi.org/10.1177/1203475415624912

    Article  PubMed  Google Scholar 

  173. Ibler KS, Gramkow C, Siemssen PA (2015) Autologous fat transplantation for the treatment of linear scleroderma en coup de sabre. Skinmed 13(1):74–76

    PubMed  Google Scholar 

  174. Del Papa N, Di Luca G, Sambataro D, Zaccara E, Maglione W, Gabrielli A, Fraticelli P, Moroncini G, Beretta L, Santaniello A, Sambataro G, Ferraresi R, Vitali C (2015) Regional implantation of autologous adipose tissue-derived cells induces a prompt healing of long-lasting indolent digital ulcers in patients with systemic sclerosis. Cell Transplant 24(11):2297–2305. https://doi.org/10.3727/096368914X685636

    Article  PubMed  Google Scholar 

  175. Scuderi N, Ceccarelli S, Onesti MG, Fioramonti P, Guidi C, Romano F, Frati L, Angeloni A, Marchese C (2013) Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic sclerosis. Cell Transplant 22(5):779–795. https://doi.org/10.3727/096368912X639017

    Article  PubMed  Google Scholar 

  176. Joly P, Bamberger N, Crickx B, Belaich S (1994) Treatment of severe forms of localized scleroderma with oral corticosteroids: follow-up study on 17 patients. Arch Dermatol 130(5):663–664

    Article  CAS  Google Scholar 

  177. Uziel Y, Feldman BM, Krafchik BR, Yeung RS, Laxer RM (2000) Methotrexate and corticosteroid therapy for pediatric localized scleroderma. J Pediatr 136(1):91–95. https://doi.org/10.1016/s0022-3476(00)90056-8

    Article  CAS  PubMed  Google Scholar 

  178. Zulian F, Martini G, Vallongo C, Vittadello F, Falcini F, Patrizi A, Alessio M, La Torre F, Podda RA, Gerloni V, Cutrone M, Belloni-Fortina A, Paradisi M, Martino S, Perilongo G (2011) Methotrexate treatment in juvenile localized scleroderma: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 63(7):1998–2006. https://doi.org/10.1002/art.30264

    Article  CAS  PubMed  Google Scholar 

  179. Weibel L, Sampaio MC, Visentin MT, Howell KJ, Woo P, Harper JI (2006) Evaluation of methotrexate and corticosteroids for the treatment of localized scleroderma (morphoea) in children. Br J Dermatol 155(5):1013–1020. https://doi.org/10.1111/j.1365-2133.2006.07497.x

    Article  CAS  PubMed  Google Scholar 

  180. Bodewes ILA, Huijser E, van Helden-Meeuwsen CG, Tas L, Huizinga R, Dalm V, van Hagen PM, Groot N, Kamphuis S, van Daele PLA, Versnel MA (2018) TBK1: A key regulator and potential treatment target for interferon positive Sjogren’s syndrome, systemic lupus erythematosus and systemic sclerosis. J Autoimmun 91:97–102. https://doi.org/10.1016/j.jaut.2018.02.001

    Article  CAS  PubMed  Google Scholar 

  181. Marrapodi R, Pellicano C, Radicchio G, Leodori G, Colantuono S, Iacolare A, Gigante A, Visentini M, Rosato E (2020) CD21(low) B cells in systemic sclerosis: a possible marker of vascular complications. Clin Immunol 213:108364. https://doi.org/10.1016/j.clim.2020.108364

    Article  CAS  PubMed  Google Scholar 

  182. Sharabi A, Kasper IR, Tsokos GC (2018) The serine/threonine protein phosphatase 2A controls autoimmunity. Clin Immunol 186:38–42. https://doi.org/10.1016/j.clim.2017.07.012

    Article  CAS  PubMed  Google Scholar 

  183. Ugor E, Simon D, Almanzar G, Pap R, Najbauer J, Nemeth P, Balogh P, Prelog M, Czirjak L, Berki T (2017) Increased proportions of functionally impaired regulatory T cell subsets in systemic sclerosis. Clin Immunol 184:54–62. https://doi.org/10.1016/j.clim.2017.05.013

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present research was supported by the Key project for international and regional cooperation in science and technology innovation of Hunan province (2019WK2081), the Project for leading talents in science and technology in Hunan province (2019RS3003), and CAMS Innovation Fund for Medical Sciences (2019-I2M-5-033).

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: Qianjin Lu, Amr H Sawalha, Ming Zhao, Jiali Wu; drafting of the manuscript: Ming Zhao, Jiali Wu; revising of the manuscript: Qianjin Lu, Amr H Sawalha, Ming Zhao, Jiali Wu, Haijing Wu.

Corresponding authors

Correspondence to Amr H. Sawalha or Qianjin Lu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Wu, J., Wu, H. et al. Clinical Treatment Options in Scleroderma: Recommendations and Comprehensive Review. Clinic Rev Allerg Immunol 62, 273–291 (2022). https://doi.org/10.1007/s12016-020-08831-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-020-08831-4

Keywords

Navigation