Skip to main content
Log in

Role of Conformational Entropy in Complex Macromolecular Systems

  • Review
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Conformation is the key to revealing the physical characteristics of macromolecular systems and receives tremendous interest from the fields of polymer physics and biological materials. The conformational entropy, related to the number of conformations of the macromolecule, plays a predominant role in the structural formation, transition, and dynamics of macromolecular systems. In this review, we present a comprehensive overview of the research, development and applications of the conformational entropy in complex macromolecular systems. We begin by discussing the physical origin of the conformational entropy based on statistical mechanics of macromolecules in classical polymer physics, and then introduce the recent progress on the predictive modeling of the conformational entropy, associated with a variety of typical macromolecular systems. Furthermore, we also highlight several principles and rules, which have been harnessed to manipulate the structural organization of complex macromolecular systems through the conformational entropy. We anticipate that this review will further promote fundamental research in polymer physics, and offer intriguing prospects for applications in complex macromolecular systems including biomacromolecules, grafted nanoparticles, and polymer nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Z., Macromolecules, 2017, 50, 9073

    CAS  Google Scholar 

  2. Doi M., Edwards S. F., The Theory of Polymer Dynamics, Clarendon Press, New York, Oxford, 1987

    Google Scholar 

  3. Balazs A. C., Emrick T., Russell T. P., Science, 2006, 314, 1107

    CAS  PubMed  Google Scholar 

  4. Kim G., Lee D., Shanker A., Shao L., Kwon M. S., Gidley D., Kim J., Pipe K. P., Nat. Mater., 2015, 14, 295

    CAS  PubMed  Google Scholar 

  5. Noriega R., Salleo A., Spakowitz A. J., Proc. Natl. Acad. Sci. USA, 2013, 110, 16315

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nielsen C. B., Holliday S., Chen H., Cryer S. J., Mcculloch I., Acc. Chem. Res., 2015, 48, 2803

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bigman L. S., Levy Y., Isr. J. Chem., 2020, 60, 705

    CAS  Google Scholar 

  8. Harano Y., Kinoshita M., Biophys. J., 2005, 89, 2701

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Harano Y., Kinoshita M., Chem. Phys. Lett., 2004, 399, 342

    CAS  Google Scholar 

  10. Hou C., Gao L., Wang Y., Yan L.-T., Nanoscale Horiz., 2022, 7, 1016

    CAS  PubMed  Google Scholar 

  11. Xu Z., Dai X., Bu X., Yang Y., Zhang X., Man X., Zhang X., Doi M., Yan L.-T., ACS Nano, 2021, 15, 4608

    CAS  PubMed  Google Scholar 

  12. Zhu G., Wang Y., Gao L., Xu Z., Zhang X., Dai X., Dai L., Hou C., Yan L.-T., Fundam. Res., 2021, 1, 641

    CAS  Google Scholar 

  13. Dai X., Chen P., Zhu G., Xu Z., Zhang X., Yan L., J. Phys. Chem. Lett., 2019, 10, 7970

    CAS  PubMed  Google Scholar 

  14. Zhu G., Huang Z., Xu Z., Yan L.-T., Acc. Chem. Res., 2018, 51, 900

    CAS  PubMed  Google Scholar 

  15. Zhu G., Xu Z., Yang Y., Dai X., Yan L.-T., ACS Nano, 2018, 12, 9467

    CAS  PubMed  Google Scholar 

  16. Xu G., Huang Z., Chen P., Cui T., Zhang X., Miao B., Yan L.-T., Small, 2017, 13, 1603155

    Google Scholar 

  17. Huang Z., Lu C., Dong B., Xu G., Ji C., Zhao K., Yan L.-T., Nanoscale, 2016, 8, 1024

    CAS  PubMed  Google Scholar 

  18. Dong B., Huang Z., Chen H., Yan L.-T., Macromolecules, 2015, 48, 5385

    CAS  Google Scholar 

  19. Liu Z., Guo R., Xu G., Huang Z., Yan L.-T., Nano Lett., 2014, 14, 6910

    CAS  PubMed  Google Scholar 

  20. Dong B., Guo R., Yan L.-T., Macromolecules, 2014, 47, 4369

    CAS  Google Scholar 

  21. Jiang L., Xie Q., Tsang B., Granick S., Nat. Commun., 2019, 10, 3314

    PubMed  PubMed Central  Google Scholar 

  22. Zhong M., Wang R., Kawamoto K., Olsen B. D., Johnson J. A., Science, 2016, 353, 1264

    CAS  PubMed  Google Scholar 

  23. Bustamante C., Marko J. F., Siggia E. D., Smith S., Science, 1994, 265, 1599

    CAS  PubMed  Google Scholar 

  24. Schmid F., Phys. Rev. Lett., 2013, 111, 28303

    Google Scholar 

  25. Dai X., Zhang X., Gao L., Xu Z., Yan L.-T., Nat. Commun., 2022, 13, 4094

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu Z., Dai X., Bu X., Yang Y., Zhang X., Man X., Zhang X., Doi M., Yan L.-T., ACS Nano, 2021, 15, 4608

    CAS  PubMed  Google Scholar 

  27. Bailey E. J., Winey K. I., Prog. Polym. Sci., 2020, 105, 101242

    CAS  Google Scholar 

  28. Cai L., Panyukov S., Rubinstein M., Macromolecules, 2011, 44, 7853

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Doi M., Introduction to Polymer Physics, Oxford University Press, New York, 1996

    Google Scholar 

  30. Colby R. H., Rubinstein M., Polymer Physics, Oxford University, New York, 2003

    Google Scholar 

  31. Lee J. Y., Shou Z., Balazs A. C., Phys. Rev. Lett., 2003, 91, 136103

    PubMed  Google Scholar 

  32. Thompson R. B., Ginzburg V. V., Matsen M. W., Balazs A. C., Science, 2001, 292, 2469

    CAS  PubMed  Google Scholar 

  33. Bates F. S., Fredrickson G. H., Phys. Today, 1999, 52, 32

    CAS  Google Scholar 

  34. Matsen M. W., Bates F. S., Macromolecules, 1996, 29, 1091

    CAS  Google Scholar 

  35. Bates F. S., Fredrickson G. H., Annu. Rev. Phys. Chem., 1990, 41, 525

    CAS  PubMed  Google Scholar 

  36. Detcheverry F. A., Kang H., Daoulas K. C., Müller M., Nealey P. F., de Pablo J. J., Macromolecules, 2008, 41, 4989

    CAS  Google Scholar 

  37. Frederick K. K., Marlow M. S., Valentine K. G., Wand A. J., Nature, 2007, 448, 325

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sheiko S. S., Zhou J., Arnold J., Neugebauer D., Matyjaszewski K., Tsitsilianis C., Tsukruk V. V., Carrillo J. Y., Dobrynin A. V., Rubinstein M., Nat. Mater., 2013, 12, 735

    CAS  PubMed  Google Scholar 

  39. Podzimek S., Multi-Angle Light Scattering: An Efficient Tool Revealing Molecular Structure of Synthetic Polymers, Wiley Online Library, 2019, 1800174

  40. Danielsen S., Beech H. K., Wang S., El-Zaatari B. M., Wang X., Sapir L., Ouchi T., Wang Z., Johnson P. N., Hu Y., Lundberg D. J., Stoychev G., Craig S. L., Johnson J. A., Kalow J. A., Olsen B. D., Rubinstein M., Chem. Rev., 2021, 121, 5042

    CAS  PubMed  Google Scholar 

  41. Frenkel D. Nat. Mater., 2015, 14, 9

    CAS  PubMed  Google Scholar 

  42. Zhu G., Xu Z., Yan L.-T. Nano Lett., 2020, 20, 5616

    CAS  PubMed  Google Scholar 

  43. Escobedo F. A. Soft Matter, 2014, 10, 8388

    CAS  PubMed  Google Scholar 

  44. Flory P. J., Principles of Polymer Chemistry, Cornell University Press, New York, 1953

    Google Scholar 

  45. Flory P. J., Volkenstein M., Statistical Mechanics of Chain Molecules, Interscience, New York, 1969

    Google Scholar 

  46. Guth E., J. Polym. Sci., Part C: Polym. Symp., 1966, 12, 89

    Google Scholar 

  47. James H. M., Guth E., J. Chem. Phys., 1943, 11, 455

    CAS  Google Scholar 

  48. Guth E., Mark H., Monatsh. Chem., 1934, 65, 93

    CAS  Google Scholar 

  49. Kuhn W., Kolloid-Zeitschrift, 1934, 68, 2

    CAS  Google Scholar 

  50. Broedersz C. P., Mackintosh F. C., Rev. Mod. Phys., 2014, 86, 995

    CAS  Google Scholar 

  51. Fakhri N., Mackintosh F. C., Lounis B., Cognet L., Pasquali M., Science, 2010, 330, 1804

    CAS  PubMed  Google Scholar 

  52. Fakhri N., Tsyboulski D. A., Cognet L., Weisman R. B., Pasquali M., Proc. Natl. Acad. Sci. USA, 2009, 106, 14219

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gittes F., Mickey B., Nettleton J., Howard J., J. Cell Biol., 1993, 120, 923

    CAS  PubMed  Google Scholar 

  54. Broedersz C. P., Depken M., Yao N. Y., Pollak M. R., Weitz D. A., Mackintosh F. C., Phys. Rev. Lett., 2010, 105, 238101

    PubMed  Google Scholar 

  55. Broedersz C. P., Mackintosh F. C., Rev. Mod. Phys., 2014, 86, 995

    CAS  Google Scholar 

  56. Kratky O., Porod G., Recl. Trav. Chim. Pays-Bas, 1949, 68, 1106

    CAS  Google Scholar 

  57. Schellman J. A., Biopolym. Orig. Res. Biomol., 1974, 13, 217

    CAS  Google Scholar 

  58. Gardel M. L., Nakamura F., Hartwig J. H., Crocker J. C., Stossel T. P., Weitz D. A., Proc. Natl. Acad. Sci. USA, 2006, 103, 1762

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gardel M. L., Shin J. H., Mackintosh F. C., Mahadevan L., Matsudaira P., Weitz D. A., Science, 2004, 304, 1301

    CAS  PubMed  Google Scholar 

  60. Wong I. Y., Gardel M. L., Reichman D. R., Weeks E. R., Valentine M. T., Bausch A. R., Weitz D. A., Phys. Rev. Lett., 2004, 92, 178101

    CAS  PubMed  Google Scholar 

  61. Lai S. K., Wang Y., Hida K., Cone R., Hanes J., Proc. Natl. Acad. Sci. USA, 2010, 107, 598

    CAS  PubMed  Google Scholar 

  62. Fabry B., Maksym G. N., Butler J. P., Glogauer M., Navajas D., Fredberg J. J., Phys. Rev. Lett., 2001, 87, 148102

    CAS  PubMed  Google Scholar 

  63. Mackintosh F. C., Levine A. J., Phys. Rev. Lett., 2008, 100, 18104

    CAS  Google Scholar 

  64. Deng L., Trepat X., Butler J. P., Millet E., Morgan K. G., Weitz D. A., Fredberg J. J., Nat. Mater., 2006, 5, 636

    CAS  PubMed  Google Scholar 

  65. Xia F., Guo W., Mao Y., Hou X., Xue J., Xia H., Wang L., Song Y., Ji H., Ouyang Q., J. Am. Chem. Soc., 2008, 130, 8345

    CAS  PubMed  Google Scholar 

  66. Zhang R., Lee B., Stafford C. M., Douglas J. F., Dobrynin A. V., Bockstaller M. R., Karim A., Proc. Natl. Acad. Sci. USA, 2017, 114, 2462

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mai Y., Eisenberg A., Chem. Soc. Rev., 2012, 41, 5969

    CAS  PubMed  Google Scholar 

  68. Broz P., Driamov S., Ziegler J., Ben-Haim N., Marsch S., Meier W., Hunziker P., Nano Lett., 2006, 6, 2349

    CAS  PubMed  Google Scholar 

  69. Hentschel J., Kushner A. M., Ziller J., Guan Z., Angew. Chem. Int. Ed., 2012, 51, 10561

    CAS  Google Scholar 

  70. Xia Y., Yang P., Sun Y., Wu Y., Mayers B., Gates B., Yin Y., Kim F., Yan H., Adv. Mater., 2003, 15, 353

    CAS  Google Scholar 

  71. Mai Y., Eisenberg A., Chem. Soc. Rev., 2012, 41, 5969

    CAS  PubMed  Google Scholar 

  72. Gronheid R., Neale P., Directed Self-Assembly of Block Co-Polymers for Nano-Manufacturing, Woodhead Publishing, Cambridge, 2015

    Google Scholar 

  73. Matsen M. W., Macromolecules, 2012, 45, 2161

    CAS  Google Scholar 

  74. Mammeri F., Le Bourhis E., Rozes L., Sanchez C., J. Mater. Chem., 2005, 15, 3787

    CAS  Google Scholar 

  75. Jin J., Wu J., Frischknecht A. L., Macromolecules, 2009, 42, 7537

    CAS  Google Scholar 

  76. Hoheisel T. N., Hur K., Wiesner U. B., Prog. Polym. Sci., 2015, 40, 3

    CAS  Google Scholar 

  77. Bockstaller M. R., Prog. Polym. Sci., 2015, 100, 1

    Google Scholar 

  78. Kang H., Detcheverry F. A., Mangham A. N., Stoykovich M. P., Daoulas K. C., Hamers R. J., Müller M., de Pablo J. J., Nealey P. F., Phys. Rev. Lett., 2008, 100, 148303

    PubMed  Google Scholar 

  79. Curk T., Martinez-Veracoechea F. J., Frenkel D., Dobnikar J., Nano Lett., 2014, 14, 2617

    CAS  PubMed  Google Scholar 

  80. Arora H., Li Z., Sai H., Kamperman M., Warren S. C., Wiesner U., Macromol. Rapid Commun., 2010, 31, 1960

    CAS  PubMed  Google Scholar 

  81. Jones M. R., Macfarlane R. J., Lee B., Zhang J., Young K. L., Senesi A. J., Mirkin C. A., Nat. Mater., 2010, 9, 913

    CAS  PubMed  Google Scholar 

  82. Milner S. T., Witten T. A., Cates M. E., Macromolecules, 1988, 21, 2610

    CAS  Google Scholar 

  83. Åqvist J., Kazemi M., Isaksen G. V., Brandsdal B. O., Acc. Chem. Res., 2017, 50, 199

    PubMed  Google Scholar 

  84. Jia H., Liggins J. R., Chow W. S., Sci. Rep., 2014, 4(1), 4142

    PubMed  PubMed Central  Google Scholar 

  85. Madsen J. J., Grime J. M., Rossman J. S., Voth, G. A. Proc. Natl. Acad. Sci. USA, 2018, 115, 8595

    Google Scholar 

  86. Rossman J. S., Jing X., Leser G. P., Lamb R. A., Cell, 2010, 142, 902

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Schmidt N. W., Mishra A., Wang J., Degrado W. F., Wong G. C., J. Am. Chem. Soc., 2013, 135, 13710

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natual Science Foundation of China (Nos.22025302, 21873053) and the National Key R&D Program of China (No. 2016YFA0202500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Tang Yan.

Ethics declarations

YAN Li-Tang is a youth executive editorial board member for Chemical Research in Chinese Universities and was not involved in the editorial review or the decision to publish this article. The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Wan, HX., Zhang, X. et al. Role of Conformational Entropy in Complex Macromolecular Systems. Chem. Res. Chin. Univ. 39, 709–718 (2023). https://doi.org/10.1007/s40242-023-3174-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3174-2

Keywords

Navigation