Skip to main content
Log in

Current Understanding on the Unique Relaxation Dynamics of Sub-nanometer Materials and Their Structure-Property Relationships

  • Review
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Sub-nanometer materials(SNMs) define the emergent functional material system with their characteristic dimensions at sub-1 nm scale and they can be generally constructed with the sub-1 nm molecular clusters as the basic structural units. Due to their extremely small sizes, the sub-nm scale particles possess diffusive dynamics in their bulk with an energy level close to typical thermal fluctuation. Meanwhile, the volume fraction of surface structures becomes dominant and the dynamics of surface structures can be distinguishable from their diffusive dynamics. The research on the dynamics of SNM is key to the understanding of their unique properties in comparison to small molecule and nano-material systems. This review paper summarizes recent progresses in the studies of relaxation dynamics of SNM upon the combinatory application of X-ray/neutron scattering, dielectric spectroscopy and rheometric technology. The functional materials inspired by the dynamics investigations with applications in mechanical strengthening, ion conduction, and gas separation are also reviewed. In the end, challenges and outlooks on the theories, characterizations and the prediction of possible new functionalities of SNMs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng Z., Zhou Q., Li M., Yin P., Chem. Sci., 2019, 10(31), 7333

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang W. S. S., Wang X., Science, 2022, 377, 100

    CAS  PubMed  Google Scholar 

  3. Tsuboi M., Hibino M., Mizuno N., Uchida S., J. Solid State Chem., 2016, 234(3), 9

    CAS  Google Scholar 

  4. Wu H., Li L., Tsuboi M., Cheng Y., Wang W., Mamontov E., Uchida S., Wang Z., Yin P., J. Phys. Chem. Lett., 2018, 9(19), 5772

    CAS  PubMed  Google Scholar 

  5. Ni B., Zhang Q., Ouyang C., Zhang S., Yu B., Zhuang J., Gu L., Wang X., CCS Chem., 2020, 2(1), 642

    CAS  Google Scholar 

  6. Liu H., Gong Q., Yue Y., Guo L., Wang X., J. Am. Chem. Soc., 2017, 139(25), 8579

    CAS  PubMed  Google Scholar 

  7. Liu G., Feng X., Lang K., Zhang R., Guo D., Yang S., Cheng S. Z. D., Macromolecules, 2017, 50(17), 6637

    CAS  Google Scholar 

  8. Cai L. H., Panyukov S., Rubinstein M., Macromolecules, 2011, 44(19), 7853

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Poling-Skutvik R., Krishnamoorti R., Conrad J. C., ACS Macro Lett., 2015, 4(10), 1169

    CAS  PubMed  Google Scholar 

  10. Cheng S., Xie S. J., Carrillo J. Y., Carroll B., Martin H., Cao P. F., Dadmun M. D., Sumpter B. G., Novikov V. N., Schweizer K. S., Sokolov A. P., ACS Nano, 2017, 11(1), 752

    CAS  PubMed  Google Scholar 

  11. Jalarvo N., Gourdon O., Ehlers G., Tyagi M., Kumar S. K., Dobbs K. D., Smalley R. J., Guise W. E., Ramirez-Cuesta A., Wildgruber C., Crawford M. K., J. Phys. Chem. C, 2014, 118(10), 5579

    CAS  Google Scholar 

  12. Carroll B., Bocharova V., Carrillo J.-M. Y., Kisliuk A., Cheng S., Yamamoto U., Schweizer K. S., Sumpter B. G., Sokolov A. P., Macromolecules, 2018, 51(6), 2268

    CAS  Google Scholar 

  13. Lungova M., Krutyeva M., Pyckhout-Hintzen W., Wischnewski A., Monkenbusch M., Allgaier J., Ohl M., Sharp M., Richter D., Phys. Rev. Lett., 2016, 117(14), 147803

    CAS  PubMed  Google Scholar 

  14. Zhou H., Ye Q., Xu J., Mater. Chem. Front., 2017, 1(2), 212

    CAS  Google Scholar 

  15. Li H., Pang S., Wu S., Feng X., Mullen K., Bubeck C., J. Am. Chem. Soc., 2011, 133(24), 9423

    CAS  PubMed  Google Scholar 

  16. Buchecker T., Schmid P., Grillo I., Prevost S., Drechsler M., Diat O., Pfitzner A., Bauduin P., J. Am. Chem. Soc., 2019, 141(17), 6890

    CAS  PubMed  Google Scholar 

  17. Xue B., Lai Y., Liu Y., Li M., Li X., Yin P., J. Colloid Interface Sci., 2023, 641, 853

    CAS  PubMed  Google Scholar 

  18. Yin J. F., Xiao H., Xu P., Yang J., Fan Z., Ke Y., Ouyang X., Liu G. X., Sun T. L., Tang L., Cheng S. Z. D., Yin P., Angew. Chem. Int. Ed., 2021, 60(41), 22212

    CAS  Google Scholar 

  19. Zhou X., Yang J., Yang J., Yin P., J. Phys. Chem. Lett., 2022, 13(30), 7009

    CAS  PubMed  Google Scholar 

  20. Zhang S., Lu Q., Yu B., Cheng X., Zhuang J., Wang X., Adv. Funct. Mater., 2021, 31(20), 2100703

    CAS  Google Scholar 

  21. Zhang S., Liu N., Wang H., Lu Q., Shi W., Wang X., Adv. Mater., 2021, 33(23), e2100576

    PubMed  Google Scholar 

  22. Hu S., Liu H., Wang P., Wang X., J. Am. Chem. Soc., 2013, 135(30), 11115

    CAS  PubMed  Google Scholar 

  23. Meirzadeh E., Evans A. M., Rezaee M., Milich M., Dionne C. J., Darlington T. P., Bao S. T., Bartholomew A. K., Handa T., Rizzo D. J., Wiscons R. A., Reza M., Zangiabadi A., Fardian-Melamed N., Crowther A. C., Schuck P. J., Basov D. N., Zhu X., Giri A., Hopkins P. E., Kim P., Steigerwald M. L., Yang J., Nuckolls C., Roy X., Nature, 2023, 613(7942), 71

    CAS  PubMed  Google Scholar 

  24. Fu H., Yang D., Qiu D., Yan C. H., Cai R., Du Y., Tan W., J. Phys. Chem. Lett., 2022, 13(7), 1855

    CAS  PubMed  Google Scholar 

  25. Fu H., Xu Y., Qiu D., Ma T., Yue G., Zeng Z., Song L., Wang S., Zhang S., Du Y., Yan C. H., Angew. Chem., Int. Ed., 2022, 61(45), e202212251

    CAS  Google Scholar 

  26. Ma L., Xu Z., Chen Y., Zhang M., Yin J., Li M., Chen K., Yin P., ACS Appl. Mater. Interfaces, 2020, 12(34), 38655

    CAS  PubMed  Google Scholar 

  27. Chen J., Dong Z., Li M., Li X., Chen K., Yin P., Adv. Funct. Mater., 2022, 32(33), 2111892

    CAS  Google Scholar 

  28. Lindner P., Zemb T., Neutrons, X-Rays and Light Scattering Methods Applied to Soft Condensed Matter, Elsevier, North Holland, 2002

    Google Scholar 

  29. Leheny R. L., Curr. Opin. Colloid Interface Sci., 2012, 17(1), 3

    CAS  Google Scholar 

  30. Shpyrko O. G., J. Synchrotron Radiat., 2014, 21(Pt 5), 1057

    CAS  PubMed  Google Scholar 

  31. Berne B. J., Pecora R., Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics, John Wiley, New York, 1976

    Google Scholar 

  32. Schätzel K., J. Mod. Opt., 1991, 38(9), 1849

    Google Scholar 

  33. Block I. D., Scheffold F., Rev. Sci. Instrum., 2010, 81(12), 123107

    PubMed  Google Scholar 

  34. Pine D. J., Weitz D. A., Zhu J. X., Herbolzheimer E., J. Phys., 1990, 51(18), 2101

    CAS  Google Scholar 

  35. Kremer F., Schönhals A., Broadband Dielectric Spectroscopy, Springer-Verlag, Berlin, Heidelberg, 2003

    Google Scholar 

  36. Cai L., Lai Y., Yin P., ChemPhysChem, 2021, 22(1), 9

    CAS  PubMed  Google Scholar 

  37. Schawe J. E. K., Thermochim. Acta, 1995, 260, 1

    CAS  Google Scholar 

  38. Rubinstein M., Colby R. H., Polymer Physics, Vol.23, Oxford University Press, New York, 2003

    Google Scholar 

  39. Koumakis N., Pamvouxoglou A., Poulos A. S., Petekidis G., Soft Matter, 2012, 8(15), 4271

    CAS  Google Scholar 

  40. Mason T. G., Weitz D. A., Phys. Rev. Lett., 1995, 75(14), 2770

    CAS  PubMed  Google Scholar 

  41. Shikata T., Pearson D. S., J. Rheol., 1994, 38(3), 601

    Google Scholar 

  42. Liu Y., Yan X. Y., Guo Q. Y., Lei H., Liu X. Y., Li X. H., Wu Y., Zhang W., Liu G., Cheng S. Z. D., Macromol. Chem. Phys., 2022, 224(3), 2200357

    Google Scholar 

  43. Zhao B., Xu S., Adeel M., Zheng S., Polymer, 2019, 160, 82

    CAS  Google Scholar 

  44. Yamamoto U., Carrillo J.-M. Y., Bocharova V., Sokolov A. P., Sumpter B. G., Schweizer K. S., Macromolecules, 2018, 51(6), 2258

    CAS  Google Scholar 

  45. Zhou X., Yang J., Yin J.-F., Liu F. W., Huang J., Li M., Liu Y., Cai L., Sun T. L., Yin P., Chem. Sci., 2022, 13(39), 11633

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang X., Wei W., Xiong H., Macromolecules, 2022, 55(9), 3637

    CAS  Google Scholar 

  47. Liu Y., Liu G., Zhang W., Du C., Wesdemiotis C., Cheng S. Z. D., Macromolecules, 2019, 52(11), 4341

    CAS  Google Scholar 

  48. Zou Q., Zhu Y., Ruan Y., Zhang R., Liu G., Giant, 2021, 8, 100070

    CAS  Google Scholar 

  49. Yin J. F., Zheng Z., Yang J., Liu Y., Cai L., Guo Q. Y., Li M., Li X., Sun T. L., Liu G. X., Huang C., Cheng S. Z. D., Russell T. P., Yin P., Angew. Chem. Int. Ed., 2021, 60(9), 4894

    CAS  Google Scholar 

  50. Alexandris S., Franczyk A., Papamokos G., Marciniec B., Matyjaszewski K., Koynov K., Mezger M., Floudas G., Macromolecules, 2015, 48(10), 3376

    CAS  Google Scholar 

  51. Alexandris S., Franczyk A., Papamokos G., Marciniec B., Graf R., Matyjaszewski K., Koynov K., Floudas G., Macromolecules, 2017, 50(10), 4043

    CAS  Google Scholar 

  52. Yin P., Li D., Liu T., Isr. J. Chem., 2011, 51(2), 191

    CAS  Google Scholar 

  53. Li X., Zhou Q., Ma L., Chen K., Yin P., J. Colloid Interface Sci., 2021, 594, 874

    CAS  PubMed  Google Scholar 

  54. Rong S., Wang X., Chem. Commun., 2022, 58(82), 11475

    CAS  Google Scholar 

  55. Chai S., Xu F., Zhang R., Wang X., Zhai L., Li X., Qian H. J., Wu L., Li H., J. Am. Chem. Soc., 2021, 143(50), 21433

    CAS  PubMed  Google Scholar 

  56. Guo H., Li L., Xu X., Zeng M., Chai S., Wu L., Li H., Angew. Chem. Int. Ed., 2022, 61(44), e202210695

    CAS  Google Scholar 

  57. Liu L., Cai L., Xiao H., Lai Y., Liu Y., Zhou X., Yin J., Yang J., Chen K., Yin P., Nano Lett., 2023, 23(7), 2669

    CAS  PubMed  Google Scholar 

  58. Xu Z., Chen K., Li M., Hu C., Yin P., Chem. Commun., 2020, 56(39), 5287

    CAS  Google Scholar 

  59. Chen K., Liu S., Zhu W., Yin P., Small, 2022, 18(40), e2203957

    PubMed  Google Scholar 

  60. Zheng Z., Li M., Lai Y., Cao Y., Yin P., Macromol. Rapid Commun., 2023, 44(1), e2200227

    PubMed  Google Scholar 

  61. Wang Z., Daemen L. L., Cheng Y., Mamontov E., Bonnesen P. V., Hong K., Ramirez-Cuesta A. J., Yin P., Chem.-Eur. J., 2016, 22(40), 14131

    CAS  PubMed  Google Scholar 

  62. Ke X., Turner S., Quintana M., Hadad C., Montellano-Lopez A., Carraro M., Sartorel A., Bonchio M., Prato M., Bittencourt C., van Tendeloo G., Small, 2013, 9(23), 3922

    CAS  PubMed  Google Scholar 

  63. Liu J., Shi W., Wang X., J. Am. Chem. Soc., 2019, 141(47), 18754

    CAS  PubMed  Google Scholar 

  64. Chai S., Cao X., Xu F., Zhai L., Qian H. J., Chen Q., Wu L., Li H., ACS Nano, 2019, 13(6), 7135

    CAS  PubMed  Google Scholar 

  65. LaMer V. K., Dinegar R. H., J. Am. Chem. Soc., 1950, 72(11), 4847

    CAS  Google Scholar 

  66. Liu J., Shi W., Ni B., Yang Y., Li S., Zhuang J., Wang X., Nat. Chem., 2019, 11(9), 839

    CAS  PubMed  Google Scholar 

  67. Gülseren O., Ercolessi F., Tosatti E., Phys. Rev. Lett., 1998, 80(17), 3775

    Google Scholar 

  68. Ivanenko A. A., Tambasov I. A., Pshenichnaia A. A., Shestakov N. P., Opt. Mater., 2017, 73, 388

    CAS  Google Scholar 

  69. Hu J., Cai L., Wang H., Chen K., Yin P., ACS Appl. Nano Mater., 2021, 4(4), 3597

    CAS  Google Scholar 

  70. Zheng Z., Li M., Zhou Q., Cai L., Yin J.-F., Cao Y., Yin P., ACS Appl. Nano Mater., 2021, 4(1), 811

    CAS  Google Scholar 

  71. Tranchemontagne D. J., Ni Z., O’Keeffe M., Yaghi O. M., Angew. Chem., Int. Ed., 2008, 47(28), 5136

    CAS  Google Scholar 

  72. Prakash M. J., Lah M. S., Chem. Commun., 2009, (23), 3326

  73. Li J. R., Zhou H. C., Nat. Chem., 2010, 2(10), 893

    PubMed  Google Scholar 

  74. Lee S., Jeong H., Nam D., Lah M. S., Choe W., Chem. Soc. Rev., 2021, 50(1), 528

    CAS  PubMed  Google Scholar 

  75. Kieffer M., Garcia A. M., Haynes C. J. E., Kralj S., Iglesias D., Nitschke J. R., Marchesan S., Angew. Chem. Int. Ed., 2019, 58(24), 7982

    CAS  Google Scholar 

  76. Zhang M., He S., Zou Q., Li Z. A., Lai Y., Chen K., Ma L., Yin J. F., Li M., He C., Ke Y., Yin P., J. Phys. Chem. Lett., 2021, 12(22), 5395

    CAS  PubMed  Google Scholar 

  77. Liu Y., Cai L., Ma L., Li M., Yang J., Chen K., Yin P., Nano Lett., 2021, 21(21), 9021

    CAS  PubMed  Google Scholar 

  78. Lai Y., Yang J., Cai L., Zhang M., He X., Yu H., Li M., Ning G. H., Yin P., Adv. Funct. Mater., 2023, 33(12), 2210122

    CAS  Google Scholar 

  79. Oldenhuis N. J., Qin K. P., Wang S., Ye H. Z., Alt E. A., Willard A. P., Van Voorhis T., Craig S. L., Johnson J. A., Angew. Chem. Int. Ed., 2020, 59(7), 2784

    CAS  Google Scholar 

  80. Kawano R., Horike N., Hijikata Y., Kondo M., Carné-Sánchez A., Larpent P., Ikemura S., Osaki T., Kamiya K., Kitagawa S., Takeuchi S., Furukawa S., Chem, 2017, 2(3), 393

    CAS  Google Scholar 

  81. Zhang M., Lai Y., Li M., Hong T., Wang W., Yu H., Li L., Zhou Q., Ke Y., Zhan X., Zhu T., Huang C., Yin P., Angew. Chem. Int. Ed., 2019, 58(48), 17412

    CAS  Google Scholar 

  82. Zheng W., Wang W., Jiang S. T., Yang G., Li Z., Wang X. Q., Yin G. Q., Zhang Y., Tan H., Li X., Ding H., Chen G., Yang H. B., J. Am. Chem. Soc., 2019, 141(1), 583

    CAS  PubMed  Google Scholar 

  83. He S., Zhang M., Xue B., Lai Y., Li M., Yin P., J. Phys. Chem. B, 2021, 125(48), 13229

    CAS  PubMed  Google Scholar 

  84. Lund R., Willner L., Stellbrink J., Lindner P., Richter D., Phys. Rev. Lett., 2006, 96(6), 068302

    PubMed  Google Scholar 

  85. Zhang M., Yu H., Zou Q., Li Z.-A., Lai Y., Cai L., Yin P., CCS Chem., 2022, 4(11), 3563

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.22241501, 92261117, 52203087), the Fundamental Research Funds for the Central Universities, China(No.2022ZYGXZR055), the Project of the Guangdong-Hong Kong-Macao Joint Laboratory(China) for Neutron Scattering Science and Technology, the TCL Science and Technology Innovation Fund, China (No.20222056), and the Science and Technology Projects of Guangzhou City, China(No.202102021088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiafu Yin or Panchao Yin.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, B., Lai, Y., Yang, J. et al. Current Understanding on the Unique Relaxation Dynamics of Sub-nanometer Materials and Their Structure-Property Relationships. Chem. Res. Chin. Univ. 39, 557–567 (2023). https://doi.org/10.1007/s40242-023-3090-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3090-5

Keywords

Navigation