Skip to main content

Trends in Recent Publications on Nanoscale Mechanics

Editor’s Notes

  • Chapter
  • First Online:
Trends in Nanoscale Mechanics
  • 1358 Accesses

Abstract

This part of the edited volume highlights trends in recent publications by providing examples of important research papers in different areas of nanoscale mechanics. Research papers on novel applications of carbon nanotubes, nanocomposites, nanodevices, quantum anti-dots, and other nanostructures are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    More references on Mechanics of Carbon Nanotubes can be found in V. M. Harik, Mechanics of Carbon Nanotubes (Nanodesigns Press, Newark, Delaware, 2011). Also in V. M. Harik, Mechanics of Carbon Nanotubes (Lecture Notes), ASME CD, ASME Short Course (ASME Educational Institute, New York, New York, 2002). Lecture Notes, ASME Short Course, 2001 ASME Annual Meeting (ASME Educational Institute, New York, New York, 2001)

References

  1. S. Gorantla, S. Avdoshenko, F. Börrnert, A. Bachmatiuk, M. Dimitrakopoulou, F. Schäffel, R. Schönfelder, J. Thomas, T. Gemming, J.H. Warner, G. Cuniberti, J. Eckert, B. Büchner, M.H. Rümmeli, Enhanced π–π interactions between a C60 fullerene and a buckle bend on a double-walled carbon nanotube. Nano Res. 3, 92–97 (2010)

    Google Scholar 

  2. V. Holovatsky, O. Voitsekhivska, I. Bernik, Effect of magnetic field on electron spectrum in spherical nano-structures. Condens. Matter Phys. 17(1), 13702:1–8 (2014)

    Google Scholar 

  3. C.M. Wang, A.N. Roy Chowdhury, S.J.A. Koh, Y.Y. Zhang, Molecular dynamics simulation and continuum shell model for buckling analysis of carbon nanotubes. in Modeling of Carbon Nanotubes, Graphene and their Composites, ed. by K.I. Tserpes, N. Silvestre. Springer Ser. Mater. Sci. 188, 239 (2014)

    Google Scholar 

  4. K. Moth-Poulsen, T. Bjornholm, Molecular electronics with single molecules in solid-state devices. Nat. Nanotechnol. 4, 551–556 (2009)

    Google Scholar 

  5. H.-E. Schaefer, Carbon nanostructures—Tubes, graphene, fullerenes, wave-particle duality, nanoscience (Springer, Berlin, 2010)

    Google Scholar 

  6. X. Xiao, T. Li, Z. Peng, H. Jin, Q. Zhong, Q. Hu, B. Yao, Q. Zhang, Q. Luo, C. Zhang, L. Gong, J. Chen, Y. Gogotsi, J. Zhou, Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy 6, 1–9 (2014)

    Google Scholar 

  7. P. Egberts, Z. Ye, X.-Z. Liu, Y. Dong, A. Martini, R.W. Carpick, Environmental dependence of atomic-scale friction at graphite surface steps. Phys. Rev. B 88, 035409/1-0 (2013)

    Google Scholar 

  8. X. Li, W. Qi, D. Mei, M.L. Sushko, I. Aksay, J. Liu, Functionalized graphene sheets as molecular templates for controlled nucleation and self-assembly of metal oxide-graphene nanocomposites. Adv. Mater. 24, 5136–5141 (2012)

    Google Scholar 

  9. M. Xu, J.T. Paci, J. Oswald, T. Belytschko, A constitutive equation for graphene based on density functional theory. Int. J. Solids Struct. 49, 2582–2589 (2012)

    Google Scholar 

  10. J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011)

    Google Scholar 

  11. V.M. Harik, Mechanics of Carbon Nanotubes (Nanodesigns Press, Newark, Delaware, 2011)

    Google Scholar 

  12. C. Efstathiou, H. Sehitoglu, J. Lambros, Multiscale strain measurements of plastically deforming polycrystalline titanium: role of deformation heterogeneities. Int. J. Plasticity 26, 93–106 (2010)

    MATH  Google Scholar 

  13. A.A. Pelegri (Mina), S.D. Tse, B.H. Kear, in Multifunctional Graphene Composites for Lightning Strike Protection: Structural Mechanics and System Integration (Rutgers University, Rutgers, 2012). A.A. Pelegri, X. Huang, Nanoindentation on soft film/hard substrate and hard film/soft substrate material systems with finite element analysis. Composites Sci. Techn. 68(1), 147–155 (2008)

    Google Scholar 

  14. Z. Ounaies, C. Park, J. Harrison, P. Lillehei, Evidence of piezoelectricity in SWNT-polyimide and SWNT-PZT-polyimide composites. J. Thermoplas. Compos. Mater. 21(5), 393–409 (2008)

    Google Scholar 

  15. M. Rahmat, P. Hubert, Carbon nanotube–polymer interactions in nanocomposites: a review. Compos. Sci. Techn. 72, 72–84 (2011)

    Google Scholar 

  16. L. Wang, A.K. Prasad, S.G. Advani, Composite membrane based on SiO2-MWCNTs and nafion for PEMFCs. J. Electrochem. Soc. 159(8), F490–F493 (2012)

    Google Scholar 

  17. T.E. Chang, L.R. Jensen, A. Kisliuk, R.B. Pipes, R. Pyrz, A.P. Sokolov, Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer 46, 439–444 (2005)

    Google Scholar 

  18. S.C. Chowdhury, B.Z. Haque(Gama), J.W. Gillespie Jr., R. Hartman, Molecular simulations of pristine and defective carbon nanotubes under monotonic and combined loading. Comput. Mater. Sci., 65, 133–143 (2012)

    Google Scholar 

  19. K.Z. Milowska, J.A. Majewski, Elastic properties of functionalized carbon nanotubes. Phys. Chem. Chem. Phys. 15, 14303–14309 (2013)

    Google Scholar 

Additional References on Mechanics of Carbon Nanotubes

  1. B. Arash, Q. Wang, A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)

    Google Scholar 

  2. A.H. Korayem, W.H. Duan, X.L. Zhao, C.M. Wang, Buckling behaviour of short multi-walled carbon nanotubes under axial compression loads. Int. J. Struct. Stab. Dyn. 12, 1250045 (2012)

    Google Scholar 

  3. Y. Zheng, X. Lanqing, F. Zheyong, N. Wei, Y. Lu, Z. Huang, Mechanical properties of graphene nanobuds: a molecular dynamics study. Curr. Nanosci. 8, 89–96 (2012)

    Google Scholar 

  4. X. Li, K. Maute, M.L. Dunn, R. Yang, Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 81, 245318 (2010)

    Google Scholar 

  5. Z. Huang, Z. Tang, J. Yu, S. Bai, Temperature-dependent thermal conductivity of bent carbon nanotubes by molecular dynamics simulation. J. Appl. Phys. 109, 104316 (2011)

    Google Scholar 

  6. Z. Xu, M.J. Buehler, Geometry controls conformation of graphene sheets: membranes, ribbons, and scrolls. ACS Nano. 4, 3869–3876 (2010)

    Google Scholar 

  7. J. Wackerfuß, Molecular mechanics in the context of the finite element method. Int. J. Numer Meth Eng. 77, 969–997 (2009)

    MATH  Google Scholar 

  8. S.J. Heo, S.B. Sinnott, Investigation of influence of thermostat configurations on the mechanical properties of carbon nanotubes in molecular dynamics simulations. J. Nanosci. Nanotechnol. 7, 1518–1524 (2007)

    Google Scholar 

  9. R. Li, G.A. Kardomateas, Thermal buckling of multi-walled carbon nanotubes by nonlocal elasticity. J. Appl. Mech. 74(3), 399–405 (2006)

    Google Scholar 

  10. F. Khademolhosseini, N. Rajapakse, A. Nojeh, Application of nonlocal elasticity shell model for axial buckling of single-walled carbon nanotubes. Sens. Trans. 7, 88–100 (2009)

    Google Scholar 

  11. Y. Huang, J. Wu, K. Hwang, Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74, 245413 (2006)

    Google Scholar 

  12. J. Peng, J. Wu, K.C. Hwang, J. Song, Y. Huang, Can a single-wall carbon nanotube be modeled as a thin shell? J. Mech. Phys. Solids 56, 2213–2224 (2008)

    MATH  MathSciNet  Google Scholar 

  13. K. Chandraseker, S. Mukherjee, Atomistic-continuum and ab initio estimation of the elastic moduli of single-walled carbon nanotubes. Comput. Mater. Sci. 40, 147–158 (2007)

    Google Scholar 

  14. N. Silvestre, Length dependence of critical measures in single-walled carbon nanotubes. Int. J. Solids Struct. 45, 4902–4920 (2008)

    MATH  Google Scholar 

  15. B.W. Jeong, J.K. Lim, S.B. Sinnott, Turning stiffness of carbon nanotube systems. Appl. Phys. Lett. 91, 093102 (2007)

    Google Scholar 

  16. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Google Scholar 

  17. D. Wang, P. Song, C. Liu, W. Wu, S. Fan, Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology, 19, 075609 (2008). C.Y. Li, T.-W. Chou, Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B 68, 073405/1-4 (2003)

    Google Scholar 

  18. Q. Zheng, Q. Jiang, Carbon nanotubes as oscillators. Phys. Rev. Lett. 88, 045503/1-3 (2002). C.Y. Li, T.-W. Chou, Vibrational behaviors of multi-walled carbon nanotube-based nanomechancial resonators. Appl Phys Lett. 84, 121–123 (2004)

    Google Scholar 

  19. H. Jiang, P. Zhang, B. Liu, Y. Huang, P.H. Geubelle, H. Gao, K.C. Hwang, The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Mater. Sci. 28, 429–442 (2003)

    Google Scholar 

  20. A. Pantano, D.M. Parks, M.C. Boyce, Mechanics of deformation of single- and multi-wall carbon nanotubes. J. Mech. Phys. Solids 52, 789–821 (2004)

    MATH  Google Scholar 

  21. X. Wang, H.K. Yang, Bending stability of multiwalled carbon nanotubes. Phys. Rev. B 73, 085409 (2006)

    Google Scholar 

  22. C.M. Wang, V.B.C. Tan, Y.Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J. Sound Vib. 294, 1060–1072 (2006)

    Google Scholar 

  23. S. Zhang, R. Khare, T. Belytschko, K.J. Hsia, S.L. Mielke, G.C. Schatz, Transition states and minimum energy pathways for the collapse of carbon nanotubes. Phys. Rev. B 73, 075423 (2006)

    Google Scholar 

  24. Y. Shibutani, S. Ogata, Mechanical integrity of carbon nanotubes for bending and torsion. Model. Simul. Mater. Sci. Eng. 12, 599–610 (2004)

    Google Scholar 

  25. A. Kutana, K.P. Giapis, Transient deformation regime in bending of single-walled carbon nanotubes. Phys. Rev. Lett. 97, 245501 (2006)

    Google Scholar 

  26. H.K. Yang, X. Wang, Bending stability of multi-wall carbon nanotubes embedded in an elastic medium. Model. Simul. Mater. Sci. Eng. 14, 99–116 (2006)

    Google Scholar 

  27. O. Liba, D. Kauzlaric, Z.R. Abrams, Y. Hanein, A. Greiner, J.G. Korvink, A dissipative particle dynamics model of carbon nanotubes. Mol. Simul. 34, 737–748 (2008)

    Google Scholar 

  28. Z. Xia, P. Guduru, W. Curtin, Enhancing mechanical properties of multiwall carbon nanotubes via sp3 interwall bridging. Phys. Rev. Lett. 98, 245501 (2007)

    Google Scholar 

Additional References on Buckling of Carbon Nanotubes

  1. A.N. Roy Chowdhury, C.M. Wang, S.J.A. Koh, Continuum shell model for buckling of armchair carbon nanotubes under compression or torsion. Int. J. Appl. Mech. 6(1) (2014)

    Google Scholar 

  2. S.D. Akbarov, Microbuckling of a doublewalled carbon nanotube embedded in an elastic matrix. Int. J. Solids Struct. 50(1), 2584–2596 (2013)

    MathSciNet  Google Scholar 

  3. J. Feliciano, C. Chun Tang, Y.Y. Zhang, C.F. Chen, Aspect ratio dependent buckling mode transition in single-walled carbon nanotubes under compression. J. Appl. Phys. 109, 084323 (2011)

    Google Scholar 

  4. A.H. Korayem, W.H. Duan, X.L. Zhao, Investigation on buckling behavior of short MWCNT. Proc. Eng. 14, 250–255 (2011)

    Google Scholar 

  5. C.M. Wang, Z.Y. Tay, A.N.R. Chowdhuary, W.H. Duan, Y.Y. Zhang, N. Silvestre, Examination of cylindrical shell theories for buckling of carbon nanotubes. Int. J. Struct. Stab. Dyn. 11, 1035–1058 (2011)

    Google Scholar 

  6. R. Ansari, S. Rouhi, Atomistic finite element model for axial buckling of single-walled carbon nanotubes. Phys. E 43, 58–69 (2010)

    Google Scholar 

  7. Y.Y. Zhang, C.M. Wang, W.H. Duan, Y. Xiang, Z. Zong, Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology 20, 395707 (2009)

    Google Scholar 

  8. X. Huang, H.Y. Yuan, K.J. Hsia, S.L. Zhang, Coordinated buckling of thick multi-walled carbon nanotubes under uniaxial compression. Nano Res. 3, 32–42 (2010)

    Google Scholar 

  9. Y.D. Kuang, X.Q. He, C.Y. Chen, G.Q. Li, Buckling of functionalized single- walled nanotubes under axial compression. Carbon 47, 279–285 (2009)

    Google Scholar 

  10. X. Yao, Q. Han, H. Xin, Bending buckling behaviors of single- and multi-walled carbon nanotubes. Comput. Mater. Sci, 43, 579–590 (2008). H. Xin, Q. Han, X.H. Yao, Buckling and axially compressive properties of perfect and defective single-walled carbon nanotubes. Carbon, 45, 2486–2495 (2007). Y.Y. Zhang, Y. Xiang, C.M. Wang, Buckling of defective carbon nanotubes. J. Appl. Phys. 106, 113503 (2009)

    Google Scholar 

  11. H.C. Cheng, Y.L. Liu, Y.C. Hsu, W.H. Chen, Atomistic-continuum modeling for mechanical properties of single-walled carbon nanotubes. Int. J. Solids Struct. 46, 1695–1704 (2009)

    MATH  Google Scholar 

  12. J. Ma, J.N. Wang, X.X. Wang, Large-diameter and water-dispersible single-walled carbon nanotubes: Synthesis, characterization and applications. J. Mater. Chem. 19, 3033–3041 (2009)

    Google Scholar 

  13. J. Zhu, Z.Y. Pan, Y.X. Wang, L. Zhou, Q. Jiang, The effects of encapsulating C60 fullerenes on the bending flexibility of carbon nanotubes. Nanotechnology 18, 275702 (2007)

    Google Scholar 

  14. T. Chang, J. Hou, Molecular dynamics simulations on buckling of multiwalled carbon nanotubes under bending. J. Appl. Phys. 100:114327 (2006). T.C. Chang, J.Y. Geng, X.M. Guo, Chirality- and size-dependent elastic properties of single-walled carbon nanotubes. Appl. Phys. Lett. 87(25), 251929 (2005). X. Guo, A.Y.T. Leung, H. Jiang, X.Q. He, Y. Huang, Critical strain of carbon nanotubes: an atomic-scale finite element study. J. Appl. Mech. 74, 347–351 (2007)

    Google Scholar 

  15. A.Y.T. Leung, X. Guo, X.Q. He, H. Jiang, Y. Huang, Postbuckling of carbon nanotubes by atomic-scale finite element. J. Appl. Phys. 99(12), 124308 (2006)

    Google Scholar 

  16. G. Cao, X. Chen, Buckling of single-walled carbon nanotubes upon bending: molecular dynamics and finite element simulations. Phys. Rev. B 73, 155435 (2006)

    Google Scholar 

  17. Y.Y. Zhang, V.B.C. Tan, and C.M. Wang, Effect of chirality on buckling behavior of single-walled carbon nanotubes, J. Appl. Phys., 100(7):074304 (2006). C.Y. Wang, Y.Y. Zhang, C.M. Wang, V.B.C. Tan, Buckling of carbon nanotubes: A literature survey. J. Nanosci. Nanotechnol. 7:4221–4247 (2007). Y.Y. Zhang, M. Wang, V.B.C. Tan, Examining the effects of wall numbers on buckling behavior and mechanical properties of multiwalled carbon nanotubes via molecular dynamics simulations. J. Appl. Phys. 103 053505 (2008). C.M. Wang, Y.Y. Zhang, Y.Xiang, J.N. Reddy, Recent studies on buckling of carbon nanotubes. Appl. Mech. Rev., 63:030804 (2010)

    Google Scholar 

  18. Q. Wang, K.M. Liew, W.H. Duan, Modeling of the Mechanical Instability of Carbon Nanotubes. Carbon 46(2), 285–290 (2008)

    Google Scholar 

  19. J.F., Waters, P. R. Gudurua, J.M. Xu Nanotube mechanics—Recent progress in shell buckling mechanics and quantum electromechanical coupling. Compos. Sci. Technol. 66, 1141–1150 (2006). J.F. Waters, L. Riester, M. Jouzi, P.R. Guduru, J.M. Xu, Buckling instabilities in multiwalled carbon nanotubes under uniaxial compression. Appl. Phys. Lett., 85, 1787–1789 (2004). J.F. Waters, P.R. Guduru, M. Jouzi, J.M. Xu, T. Hanlon, S. Suresh, Shell buckling of individual multi-walled carbon nanotubes using nano indentation Appl. Phys. Lett.,87, 103109 (2005)

    Google Scholar 

  20. R.C. Batra, Buckling of multiwalled carbon nanotubes under axial compression.. Phys. Rev. B 73 085410 (2006)

    Google Scholar 

  21. B. Ni, S.B. Sinnott, P.T. Mikulski, J.A. Harrison, Compression of carbon nanotubes filled with C60, CH4, or Ne: Predictions from molecular dynamics simulations. Phys. Rev. Lett. 88, 205505 (2002)

    Google Scholar 

  22. M.J. Buehler, J. Kong, H.J. Gao, Deformation mechanism of very long single-wall carbon nanotubes subject to compressive loading. J. Eng. Mater. Technol. 126, 245–249 (2004)

    Google Scholar 

  23. A. Pantano, M.C. Boyce, D.M. Parks, Mechanics of axial compression of single-and multi-wall carbon nanotubes. J. Eng. Mater. Technol. 126, 279–284 (2004)

    Google Scholar 

  24. G. Weick, F. von Oppen, F. Pistolesi, Euler buckling instability and enhanced current blockade in suspended single-electron transistors. Phys. Rev. B 83, 035420 (2011)

    Google Scholar 

  25. H.W. Yap, R.S. Lakes, R.W. Carpick, Mechanical instabilities of individual multiwalled carbon nanotubes under cyclic axial compression. Nano Lett. 7, 1149–1154 (2007)

    Google Scholar 

  26. A. Misra, P.K. Tyagi, P. Rai, D.R. Mahopatra, J. Ghatak, P.V. Satyam, D.K. Avasthi, D.S. Misra, Axial buckling and compressive behavior of nickel-encapsulated multiwalled carbon nanotubes. Phys. Rev. B 76, 014108 (2007)

    Google Scholar 

  27. J. Zhao, M.R. He, S. Dai, J.Q. Huang, F. Wei, J. Zhu, TEM observations of buckling and fracture modes for compressed thick multiwall carbon nanotubes. Carbon 49, 206–213 (2011)

    Google Scholar 

  28. N. Hu, K. Nunoya, D. Pan, T. Okabe, H. Fukunaga, Prediction of buckling characteristics of carbon nanotubes. Int. J Solids Struct. 44 6535–6550 (2007)

    Google Scholar 

  29. C.Q. Ru, Column buckling of multiwalled carbon nanotubes with interlayer radial displacements. Phys. Rev. B, 62 16962–16967 (2000). K.N. Kudin, G.E. Scuseria, B.I. Yakobson, C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64 235406 (2001).

    Google Scholar 

  30. H.S. Shen, Postbuckling prediction of double-walled carbon nanotubes under hydrostatic pressure. Int. J. Solids Struct. 41, 2643–2657 (2004)

    MATH  Google Scholar 

  31. X.Q. He, S. Kitipornchai, K.M. Liew, Buckling analysis of multi-walled carbon nanotubes: A continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids 53, 303–326 (2005)

    MATH  Google Scholar 

  32. D.D.T.K Kulathunga, K.K Ang, J.N. Reddy, Accurate modeling of buckling of single- and double-walled carbon nanotubes based on shell theories. J. Phys. Condens. Mater. 21, 435301 (2009). D.D.T.K. Kulathunga, K.K. Ang, J.N. Reddy, Molecular dynamics analysis on buckling of defective carbon nanotubes. J. Phys. Condens. Mater., 22:345301 (2010)

    Google Scholar 

  33. N. Silvestre, C.M. Wang, Y.Y. Zhang, Y. Xiang, Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio. Compos. Struct. 93, 1683–1691 (2011)

    Google Scholar 

  34. J. Wu, K.C. Hwang, Y. Huang, A shell theory for carbon nanotubes based on the interatomic potential and atomic structure, in Advances in Applied Mechanics, Chap. 1. Elsevier, 1–68 (2009)

    Google Scholar 

  35. J.A. Elliott, L.K.W. Sandler, A.H. Windle, R.J. Young, M.S.P. Shaffer, Collapse of single-wall carbon nanotubes is diameter dependent. Phys. Rev. Lett. 92, 095501 (2004)

    Google Scholar 

  36. Q. Wang, K.M. Liew, X.Q. He, Y. Xiang, Local buckling of carbon nanotubes under bending. Appl. Phys. Lett. 73, 093128 (2007)

    Google Scholar 

  37. X.J. Duan, C. Tang, J. Zhang, W.L. Guo, Z.F. Liu, Two distinct buckling modes in carbon nanotube bending. Nano Lett. 7, 143–148 (2007)

    Google Scholar 

  38. X. Wang, B. Sun, H.K. Yang, Stability of multi-walled carbon nanotubes under combined bending and axial compression loading. Nanotechnology. 17, 815–823 (2006). X.Wang, G.X. Lu, Y.J. Lu, Buckling of embedded multi-walled carbon nanotubes under combined torsion and axial loading. Int. J. Solids Struct. 44, 336–351 (2007)

    MATH  Google Scholar 

  39. C.L. Zhang, H.S. Shen, Buckling and postbuckling of single-walled carbon nanotubes under combined axial compression and torsion in thermal environments. Phys. Rev. B 75, 045408 (2007)

    Google Scholar 

Additional References on Radial Deformation and Torsion of Carbon Nanotubes

  1. H.Y. Wang, M. Zhao, S.X. Mao, Radial moduli of individual single-walled carbon nanotubes with and without electric current flow. Appl. Phys. Lett. 89, 211906 (2006)

    Google Scholar 

  2. M. Hasegawa, K. Nishidate, Radial deformation and stability of single-wall carbon nanotubes under hydrostatic pressure. Phys. Rev. B 74, 115401 (2006)

    Google Scholar 

  3. H. Shima, M. Sato, Multiple radial corrugations in multiwall carbon nanotubes under pressure. Nanotechnology. 19, 495705 (2008). Mater. 5, 76 (2012)

    Google Scholar 

  4. B.W. Jeong, J.K. Lim, S.B. Sinnott, Tuning the torsional properties of carbon nanotube systems with axial prestress. Appl. Phys. Lett. 92, 253114 (2008)

    Google Scholar 

  5. A.P.M. Barboza, H. Chacham, B.R.A. Neves, Universal response of single-wall carbon nanotubes to radial compression. Phys. Rev. Lett. 102, 025501 (2009)

    Google Scholar 

  6. H. Shima, S. Ghosh, M. Arroyo, K. Iiboshi, M. Sato, Thin-shell theory based analysis of radially pressurized multiwall carbon nanotubes. Comput. Mater. Sci. 52, 90–94 (2012)

    Google Scholar 

  7. Y.H. Yang, W.Z. Li, Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy. Appl. Phys. Lett. 98, 041901 (2011)

    Google Scholar 

  8. X. Huang, W. Liang, S. Zhang, Radial corrugations of multi-walled carbon nanotubes driven by inter-wall nonbonding interactions. Nanoscale Res. Lett. 6, 53 (2011)

    Google Scholar 

  9. B.W. Jeong, J.K. Lim, S.B. Sinnott, Tuning the torsional properties of carbon nanotube systems with axial prestress. Appl. Phys. Lett. 92, 253114 (2008)

    Google Scholar 

  10. H.K. Yang, X.Wang, Torsional buckling of multi-wall carbon nanotubes embedded in an elastic medium. Compos. Struct., 77:182–192 (2007). Mater. 5, 77 (2012)

    Google Scholar 

  11. Y.Y. Zhang, C.M. Wang, Torsional responses of double-walled carbon nanotubes via molecular dynamics simulations. J. Phys. Condens. Mat. 20, 455214 (2008)

    Google Scholar 

  12. Q. Wang, Torsional buckling of double-walled carbon nanotubes. Carbon 46, 1172–1174 (2008)

    Google Scholar 

  13. Q. Wang, Transportation of hydrogen molecules using carbon nanotube in torsion. Carbon 47, 1870–1873 (2009)

    Google Scholar 

  14. B.W. Jeong, S.B. Sinnott, Unique buckling responses of multi-walled carbon nanotubes incorporated as torsion springs. Carbon 48, 1697–1701 (2010)

    Google Scholar 

Additional References on Nanocomposites

  1. E.M. Byrne, M.A. McCarthy, Z. Xia, W.A. Curtin, Multiwall nanotubes can be stronger than single wall nanotubes and implications for nanocomposite design. Phys. Rev. Lett. 103, 045502 (2009)

    Google Scholar 

  2. S.G. Advani, Processing and properties of nanocomposites (World Scientific Publishing Co, London, 2007)

    Google Scholar 

  3. P.J.F. Harris, Carbon nanotube composites. Int. Mater. Rev. 49, 31–43 (2004)

    Google Scholar 

  4. E.T. Thostenson, Z.F. Ren, T.-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Comp. Sci. Tech, 61, 1899–1912 (2001). E. T. Thostenson, T.-W. Chou, Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J. Phys. D: Appl. Phys. 35(16), L77-L80 (2002). E. T. Thostenson, T.-W. Chou, On the elastic properties of carbon nanotube-based composites: modeling and characterization. J. Phys. D: Appl. Phys. 36, 573–582 (2003)

    Google Scholar 

  5. K.-T. Hsiao, J. Alms, S.G. Advani, Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites. Nanotechnology 14, 791 (2003)

    Google Scholar 

  6. K.T. Lau, Interfacial bonding characteristics of nanotube/polymer composites. Chem. Phys. Lett. 370(3–4), 399–405 (2003)

    Google Scholar 

  7. V. Lordi, N. Yao, Molecular mechanics of binding in carbon nanotube-polymer composites. J. Materials Res. 15, 2770–2779 (2000)

    Google Scholar 

  8. H.D. Wagner, O. Lourie, Y. Feldman, R. Tenne, Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72, 188–190 (1998)

    Google Scholar 

  9. L.S. Schadler, S.C. Giannaris, P.M. Ajayan, Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73, 3842–3844 (1998)

    Google Scholar 

  10. D. Qian, E.C. Dickey, R. Andrews et al., Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000)

    Google Scholar 

Additional References on Nanodevices

  1. I. Elishakoff, D. Pentaras, K. Dujat, C. Versaci, G. Muscolino, J. Storch, S. Bucas, N. Challamel, T. Natsuki, Y. Zhang, C.M. Wang, G. Ghyselinck, Carbon Nanotubes and Nanosensors: Vibration, Buckling and Ballistic Impact (ISTE Ltd and Wiley, New York, 2013)

    Google Scholar 

  2. V.A. Holovatsky, O.M. Makhanets, O.M. Voitsekhivska, Oscillator strengths of electron quantum transitions in spherical nanosystems with donor impurity in the center, Physica E, 41:1522–1526 (2009). V. Holovatsky, O. Makhanets and I. Frankiv, Quasi-stationary electron states in spherical anti-dot with donor impurity, Rom. Journ. Phys., 57(9–10): 1285–1292 (Bucharest, 2012). V. Holovatsky, I. Bernik and O. Voitsekhivska, Oscillator Strengths of Quantum Transitions in Spherical Quantum Dot GaAs/AlxGa1-xAs/GaAs/AlxGa1-xAs with On-Center Donor Impurity. Acta Physica Polonica A 125(1), 1–5 (2014)

    Google Scholar 

  3. R. Yatskiv, J. Grym, V.V. Brus, O. Cernohorsky, P.D. Maryanchuk, C. Bazioti, G.P. Dimitrakopulos, Ph. Komninou, Transport properties of metal–semiconductor junctions on n-type InP prepared by electrophoretic deposition of Pt nanoparticles, Semicond. Sci. Technol. 29:045017 (1–8) (2014)

    Google Scholar 

  4. L. Guangyong, L. Liming, Carbon nanotubes for organic solar cells. Nanotechnology Magazine, IEEE 5, 18–24 (2011)

    Google Scholar 

  5. D.M. Sun, M.Y. Timmermans, Y. Tian, A.G. Nasibulin, E.I. Kauppinen, S. Kishimoto, T. Mizutani, Y. Ohno, Flexible high-performance carbon nanotube integrated circuits. Nat Nanotechnol. 6, 156–161 (2011)

    Google Scholar 

  6. G. Weick, F. Pistolesi, E. Mariani, F. von Oppen, Discontinuous Euler instability in nanoelectromechanical systems. Phys. Rev. B 81, 121409 (2010)

    Google Scholar 

  7. A.K. Naieni, P. Yaghoobi, D.J. Woodsworth, A. Nojeh, Structural deformations and current oscillations in armchair-carbon nanotube cross devices: A theoretical study. J. Phys. D Appl. Phys. 44, 085402 (2011)

    Google Scholar 

  8. A.R. Hall, M.R. Falvo, R. Superfine, S. Washburn, A self-sensing nanomechanical resonator built on a single-walled carbon nanotube. Nano Lett., 8:3746–3749 (2008). Hall A. R., Falvo M. R., Superfine R., Washburn S., Electromechanical response of single walled carbon nanotubes to torsional strain in a self-contained device. Nat. Nanotechnol. 2, 413–416 (2007)

    Google Scholar 

  9. I. Kang, M.J. Schulz, J.H. Kim, V. Shanov, D. Shi, A Carbon Nanotube Strain Sensor for Structural Health Monitoring. Smart Mater. Struct. 15(3), 737–748 (2006)

    Google Scholar 

  10. X.M.H. Huang, C.A. Zorman, M. Mehregany, M.L. Roukes, Nanodevice motion at microwave frequencies. Nat. 421, 496 (2003)

    Google Scholar 

  11. M. Freitag, M. Radosavljevic, Y. Zhou, A.T. Johnson, W.F. Smith, Controlled creation of a carbon nanotube diode by a scanned gate. Appl. Phys. Lett. 79, 3326 (2001)

    Google Scholar 

Archival References on Nanoscale Mechanics

  1. R.S. Ruoff, J. Tersoff, D.C. Lorents, S. Subramoney, B. Chan, Radial deformation of carbon nanotubes by van der Waals’ forces. Nature 364, 514–516 (1993)

    Google Scholar 

  2. B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett., 76:2511 (1996). B.I. Yakobson, T. Dimitrica, In: V.M. Harik, M. Salas by ed., Trends in Nanoscale Mechanics. pp. 3–33, Kluwer Academic Publishers, The Netherlands (2003)

    Google Scholar 

  3. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature, 381:680 (1996). Wong E. W., P. E. Sheehan, C. M. Lieber. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 277, 1971–1975 (1997)

    Google Scholar 

  4. V. M. Harik, Solid State Comm., 120(7–8):331–335 (2001). V.M. Harik, Mechanics of carbon nanotubes: applicability of the continuum-beam models. Compt. Mat. Sci., 24(3):328–342 (2002). V.M. Harik, Ranges of applicability for the continuum-beam model in the constitutive analysis of carbon nanotubes: nanotubes or nano-beams? NASA/CR-2001–211013 (NASA Langley Research Center, Hampton, Virginia, June (2001)

    Google Scholar 

  5. C.Y. Wang, C.Q. Ru, A. Mioduchowski, Elastic buckling of multiwall carbon nanotubes under high pressure. J. Nanosci. Nanotechnol. 3, 199–208 (2003)

    Google Scholar 

  6. C.Y. Li, T.-W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct., 40:2487–2499 (2002). C.Y. Li, T.-W. Chou, Elastic properties of single-walled carbon nanotubes in transverse directions. Phys. Rev. B 69, 073401/1-4 (2004)

    Google Scholar 

  7. D. Srivastava, M. Menon, K.J. Cho, Computational Nanotechnology with Carbon Nanotubes and Fullerenes. Comp. Sci. Engng 3, 42–55 (2001)

    Google Scholar 

  8. Qian D., G. J. Wagner, W. K. Liu, M. F. Yu and R. S. Ruoff, Mechanics of carbon nanotubes (The topic of this review paper was requested by Dr. V. M. Harik (ICASE Institute, NASA Langley Research Center), who is the author of a short course “Mechanics of Carbon Nanotubes” © 2001, through Dr. A. Noor (Old Dominion University and NASA Langley Research Center), who was an editor of Applied Mechanics Reviews, for a special volume on Mechanics of Carbon Nanotubes and Nanocomposites designed to address the needs of NASA Langley Research Center (Hampton, Virginia) for the state-of-the-art reviews of research in nanoscale mechanics), Appl. Mech. Rev. 55(6):495–532 (2002)

    Google Scholar 

  9. P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang, The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials. Int. J. Solids Structr. 39, 3893–3906 (2002)

    MATH  Google Scholar 

  10. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science 287, 637–640 (2000)

    Google Scholar 

  11. W.H. Knechtel, G.S. Dusberg, W.J. Blau, E. Hernandez, A. Rubio, Reversible bending of carbon nanotubes using a transmission electron microscope. Appl. Phys. Lett., 73, 1961–1963 (1998). M.R. Falvo, G.J. Clary, R.M.Taylor, II., V. Chi, F.P. Brooks, Jr., S. Washburn, R. Superfine, Bending and buckling of carbon nanotubes under large strain. Nat., 389, 582–584 (1997). O. Lourie, D.M. Cox, H.D. Wagner, Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 81, 1638–1641 (1998)

    Google Scholar 

  12. D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasyl Harik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Harik, V. (2014). Trends in Recent Publications on Nanoscale Mechanics. In: Harik, V. (eds) Trends in Nanoscale Mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9263-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9263-9_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9262-2

  • Online ISBN: 978-94-017-9263-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics