Skip to main content
Log in

Ball-milling Synthesis of Single-atom Cu Anchored on N-Doped Carbon for Mimicking Peroxidase

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Nanozymes have shown great potential for life sciences owing to their distinct advantages, such as low cost and high stability, compared with natural enzymes. Despite significant progress, state-of-art nanozymes commonly suffer from relatively low specific activities. Herein, we propose a promising to address this issue by creating single-atom nanozymes. A ball-milling-assisted strategy has been developed to induce the transformation of Cu species from bulk to single atoms. The highly-simplified steps allow a large-scale synthesis, that over 4.2 g of single-atom Cu−N doped carbon nanozymes can be achieved in one pot. It exhibits a remarkably improved peroxidase-like activity and stability compared with N doped C anchored Cu nanoparticles. Further experimental firmly reveals the crucial role of the single-atom Cu site that can generate more active ·OH species for boosting the catalytic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nazor J., Liu J., Huisman G., Curr. Opin. Biotechnol., 2021, 69, 182

    Article  CAS  PubMed  Google Scholar 

  2. Fasim A., More V. S., More S. S., Curr. Opin. Biotechnol., 2021, 69, 68

    Article  CAS  PubMed  Google Scholar 

  3. Mehta D., Satyanarayana T., Front. Microbiol., 2016, 7, 1129

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hou L., Jiang G., Sun Y., Zhang X., Huang J., Liu S., Lin T., Ye F., Zhao S., Catalysts, 2019, 9, 1057

    Article  CAS  Google Scholar 

  5. Qiu Y., Tan G., Fang Y., Liu S., Zhou Y., Kumar A., Trivedi M., Liu D., Liu J., New J. Chem., 2021, 45, 20987

    Article  CAS  Google Scholar 

  6. Huang Y., Ren J., Qu X., Chem. Rev., 2019, 119, 4357

    Article  CAS  PubMed  Google Scholar 

  7. Zhang R., Fan K., Yan X., Sci. China Life Sci., 2020, 63, 1183

    Article  PubMed  Google Scholar 

  8. Cao Y., Liu J., Zou L., Ye B., Li G., Anal. Chim. Acta, 2021, 1145, 46

    Article  CAS  PubMed  Google Scholar 

  9. Chen Y., Wang P., Hao H., Hong J., Li H., Ji S., Li A., Gao R., Dong J., Han X., Liang M., Wang D., Li Y., J. Am. Chem. Soc., 2021, 143, 1864

    Google Scholar 

  10. Ma W., Xue Y., Guo S., Jiang Y., Wu F., Yu P., Mao L., Chem. Commun., 2020, 56, 5115

    Article  CAS  Google Scholar 

  11. Ma Y., Tian Z., Zhai W., Qu Y., Nano Res., 2022, 15, 10328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Presutti D., Agarwal T., Zarepour A., Celikkin N., Hooshmand S., Nayak C., Ghomi M., Zarrabi A., Costantini M., Behera B., Maiti T. K., Materials, 2022, 15, 337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jones J. X. H., DeLaRiva A. T., Peterson E. J., Pham H., Challa S. R., Qi G., Oh S., Wiebenga M. H., Pereira Hernández X. I., Wang Y, Datye A. K., Science, 2016, 353, 150

    Article  CAS  PubMed  Google Scholar 

  14. Sha M., Xu W., Wu Z., Gu W., Zhu C., Chem. J. Chinese Universities, 2022, 43(5), 20220077

    Google Scholar 

  15. Xu S., Yin H., Xue D., Xia H., Zhao S., Yan W., Mu S., Zhang J., Chem. J. Chinese Universities, 2022, 43(5), 20220028

    Google Scholar 

  16. Zhuang J., Wang D., Chem. J. Chinese Universities, 2022, 43(5), 20220043

    Google Scholar 

  17. Zhang H., Chen W., Zhao M., Ma C., Han Y., Chem. J. Chinese Universities, 2022, 43(5), 20220129

    Google Scholar 

  18. Lu B., Liu Q., Chen S., ACS Cat., 2020, 10, 7584

    Article  CAS  Google Scholar 

  19. Wang B., Cai H., Shen S., Small Methods, 2019, 3, 1800447

    Article  Google Scholar 

  20. Zhang Q., Guan J., Adv. Funct. Mater., 2020, 30, 2000768

    Article  CAS  Google Scholar 

  21. Chen Y., Wang P., Hao H., Hong J., Li H., Ji S., Li A., Gao R., Dong J., Han X., Liang M., Wang D., Li Y., J. Am. Chem. Soc., 2021, 143, 18643

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y., Jiao L., Yan H., Xu W., Wu Y., Zheng L., Gu W., Zhu C., Anal. Chem., 2021, 93, 12353

    Article  CAS  PubMed  Google Scholar 

  23. Xu B., Wang H., Wang W., Gao L., Li S., Pan X., Wang H., Yang H., Meng X., Wu Q., Zheng L., Chen S., Shi X., Fan K., Yan X., Liu H., Angew. Chem. Int. Ed., 2019, 58, 4911

    Article  CAS  Google Scholar 

  24. Ma B., Wang S., Liu F., Zhang S., Duan J., Li Z., Kong Y., Sang Y., Liu H., Bu W., Li L., J. Am. Chem. Soc., 2019, 141, 849

    Article  CAS  PubMed  Google Scholar 

  25. Zhang L., Chen C., Zhou J., Yang G., Wang J., Liu D., Chen Z., Lei W., Adv. Funct. Mater., 2020, 30, 2004139

    Article  CAS  Google Scholar 

  26. Wang H., Wang X., Pan J., Zhang L., Zhao M., Xu J., Liu B., Shi W., Song S., Zhang H., Angew. Chem. Int. Ed., 2021, 60, 23154

    Article  CAS  Google Scholar 

  27. Lyu Z., Zhu S., Xie M., Zhang Y., Chen Z., Chen R., Tian M., Chi M., Shao M., Xia Y., Angew. Chem. Int. Ed., 2021, 60, 1909

    Article  CAS  Google Scholar 

  28. Khanna P. K., Gaikwad S., Adhyapak P. V., Singh N., Marimuthu R., Mater. Lett., 2007, 61, 4711

    Article  CAS  Google Scholar 

  29. Ismail M. I. M., Mater. Chem. Phy., 2020, 240, 122283

    Article  CAS  Google Scholar 

  30. Ferrah D., Haines A. R., Galhenage R. P., Bruce J. P., Babore A. D., Hunt A., Waluyo I., Hemminger J. C., ACS Cat., 2019, 9, 6783

    Article  CAS  Google Scholar 

  31. Ghodselahi T., Vesaghi M. A., Shafiekhani A., Baghizadeh A., Lameii M., Appl. Surf. Sci., 2008, 255, 2730

    Article  CAS  Google Scholar 

  32. Halder A., Lenardi C., Timoshenko J., Mravak A., Yang B., Kolipaka L. K., Piazzoni C., Seifert S., Bonačić-Koutecký V., Frenkel A. I., Milani P., Vajda S., ACS Cat., 2021, 11, 6210

    Article  CAS  Google Scholar 

  33. Altuner E. E., Ozalp V. C., Yilmaz M. D., Bekmezci M., Sen F., Chemosphere, 2022, 292, 133429

    Article  CAS  PubMed  Google Scholar 

  34. Li Y. Z., Li T. T., Chen W., Song Y. Y., ACS Appl. Mater. Interfaces, 2017, 9, 29881

    Article  CAS  PubMed  Google Scholar 

  35. Shi R., He Q., Cheng S., Chen B., Wang Y., New J. Chem., 2021, 45, 18048

    Article  CAS  Google Scholar 

  36. Han S. K., Hwang T. M., Yoon Y., Kang J. W., Chemosphere, 2011, 84, 1095

    Article  CAS  PubMed  Google Scholar 

  37. Wang N., Liu Y., Wu C., Li S., Sun B., Ren Z., Yi X., Han X., Du Y., Wang J., Chem. Eng. J., 2022, 439, 135682

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52072142) and the Key Projects of Jilin Province Science and Technology Development Plan, China(No.20220203148SF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li, Xiao Wang or Daguang Wang.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Zhang, L., Wang, H. et al. Ball-milling Synthesis of Single-atom Cu Anchored on N-Doped Carbon for Mimicking Peroxidase. Chem. Res. Chin. Univ. 39, 948–953 (2023). https://doi.org/10.1007/s40242-023-2305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-2305-0

Keywords

Navigation