Skip to main content

Advertisement

Log in

Rational Design of Ratiometric Fe3+ Fluorescent Probes Based on FRET Mechanism

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

As the most abundant transition metal element in mammals, iron(Fe) plays a vital role in life activities. It is of great significance to study the variation of Fe3+ level in living organisms. In virtue of the advantages of high sensitivity, good selectivity and low damage to living systems, the fluorescence detection of Fe3+ has attracted much attention. Compared with the intensity-based fluorescent probe, the ratiometric fluorescent probe has less interference of environmental and can realize quantitative detection. In this study, four ratiometric Fe3+ fluorescent probes, R1, R2, R3 and R4, were designed and synthesized using fluorescence resonance energy transfer(FRET) mechanism to achieve quantitative detection of Fe3+. In the FRET systems, 1,8-naphthalimide fluorophore derivatives were adopted as donors while rhodamine B derivatives were selected as receptors. The connection sites of the donor and acceptor in R3 and R4 are different from those in R1 and R2. All the four probes showed good response and selectivity to Fe3+. The energy transfer efficiencies of R3 and R4 were obviously higher than those of R1 and R2. This work provided a promising strategy for the development of fluorescent ratiometic Fe3+ sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews N. C., N. Engl. J. Med., 1999, 341(26), 1986

    Article  CAS  Google Scholar 

  2. Hentze M. W., Muckenthaler M. U., Galy B., Camaschella C., Cell, 2010, 142(1), 24

    Article  CAS  Google Scholar 

  3. Liu X., Theil E. C., Acc. Chem. Res., 2005, 38(3), 167

    Article  CAS  Google Scholar 

  4. Lin W., Long L., Yuan L., Cao Z., Feng J., Anal. Chim. Acta, 2009, 634(2), 262

    Article  CAS  Google Scholar 

  5. Lynch S. R., Nutr. Rev., 1997, 55(4), 102

    Article  CAS  Google Scholar 

  6. Meneghini R., Free Radic. Biol. Med., 1997, 23(5), 783

    Article  CAS  Google Scholar 

  7. Aisen P., Wessling-Resnick M., Leibold E. A., Curr. Opin. Chem. Biol., 1999, 3(2), 200

    Article  CAS  Google Scholar 

  8. Zhang S., Li J., Zeng M., Xu J., Wang X., Hu W., Nanoscale, 2014, 6(8), 4157

    Article  CAS  Google Scholar 

  9. Narayanaswamy N., Govindaraju T., Sensor. Actuat. B Chem., 2012, 161 (1), 304

    Article  CAS  Google Scholar 

  10. Zhou B., Zhang J., Liu X., Chen H., Ai Y., Cheng K., Sun R., Zhou D., Han J., Wu Q., Cell Res., 2018, 28(12), 1171

    Article  CAS  Google Scholar 

  11. Angeli J. P. F., Krysko D. V., Conrad M., Nat. Rev. Cancer, 2019, 19(7), 405

    Article  Google Scholar 

  12. Conrad M., Angeli J. P. F., Vandenabeele P., Stockwell B. R., Nat. Rev. Drug Dis., 2016, 15(5), 348

    Article  CAS  Google Scholar 

  13. Mao C., Liu X., Zhang Y., Lei G., Yan Y., Lee H., Koppula P., Wu S., Zhuang L., Fang B., Poyurovsky M. V., Olszewski K., Gan B., Nature, 2021, 593(7860), 586

    Article  CAS  Google Scholar 

  14. Liang Z.-Q., Wang C.-X., Yang J.-X., Gao H.-W., Tian Y.-P., Tao X.-T., Jiang M.-H., New J. Chem., 2007, 31(6), 906

    Article  CAS  Google Scholar 

  15. Van den Berg C. M. G., Anal. Chem., 2006, 78(1), 156

    Article  CAS  Google Scholar 

  16. Andersen J. E., Analyst, 2005, 130(3), 385

    Article  CAS  Google Scholar 

  17. Matusch A., Depboylu C., Palm C., Wu B., Höglinger G. U., Schäfer M. K. H., Becker J. S., J. Am. Soc. Mass Spectr., 2010, 21(1), 161

    Article  CAS  Google Scholar 

  18. Gao J., He Y., Chen Y., Song D., Zhang Y., Qi F., Guo Z., He W., Inorg. Chem, 2020, 59(15), 10920

    Article  CAS  Google Scholar 

  19. Chen Y., Bai Y., Han Z., He W., Guo Z., Chem. Soc. Rev., 2015, 44(14), 4517

    Article  CAS  Google Scholar 

  20. Gao J., Chen Y., Guo Z., He W., Biophys. Rep., 2020, 6(5), 159

    Article  Google Scholar 

  21. Fang H., Chen Y., Wang Y., Geng S., Yao S., Song D., He W., Guo Z., Sci. China Chem., 2020, 63(5), 699

    Article  CAS  Google Scholar 

  22. Fang H., Geng S., Hao M., Chen Q., Liu M., Liu C., Tian Z., Wang C., Takebe T., Guan J.-L., Chen Y., Guo Z., He W., Diao J., Nat. Commun., 2021, 12(1), 109

    Article  CAS  Google Scholar 

  23. Zheng M., Tan H., Xie Z., Zhang L., Jing X., Sun Z., ACS Appl. Mater. Inter., 2013, 5(3), 1078

    Article  CAS  Google Scholar 

  24. Edison T. N. J. I., Atchudan R., Shim J.-J., Kalimuthu S., Ahn B. C., Lee Y. R., J. Photoch. Photobio. B, 2016, 158, 235

    Article  CAS  Google Scholar 

  25. Zhu C., Wang M., Qiu L., Hao S., Li K., Guo Z., He, W., Dyes Pigments, 2018, 157, 328

    Article  CAS  Google Scholar 

  26. Epsztejn S., Kakhlon O., Glickstein H., Breuer W., Cabantchik Z. I., Anal. Biochem., 1997, 248(1), 31

    Article  CAS  Google Scholar 

  27. Petrat F., Rauen U., de Groot H., Hepatology, 1999, 29(4), 1171

    Article  CAS  Google Scholar 

  28. Gui R., Jin H., Bu X., Fu Y., Wang Z., Liu Q., Coord. Chem. Rev., 2019, 383, 38382

    Article  Google Scholar 

  29. Chen C., Tian R., Zeng Y., Chu C., Liu G., Bioconjugate Chem., 2020, 31(2), 276

    Article  CAS  Google Scholar 

  30. Sahoo S. K., Sharma D., Bera R. K., Crisponi G., Callan J. F., Chem. Soc. Rev., 2012, 41(21), 7195

    Article  CAS  Google Scholar 

  31. Sahoo S. K., Crisponi G., Molecules, 2019, 24(18), 3267

    Article  CAS  Google Scholar 

  32. Das S., Aich K., Goswami S., Quah C. K., Fun H. K., New J. Chem., 2016, 40(7), 6414

    Article  CAS  Google Scholar 

  33. Chen W. D., Gong W. T., Ye Z. Q., Lin Y., Ning G. L., Dalton Trans., 2013, 42(28), 10093

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.21977044, 21731004, 21907050, 91953201, 22122701), the Natural Science Foundation of Jiangsu Province, China(Nos.BK20190282, BK20202004), the Excellent Research Program of Nanjing University, China(No.ZYJH004), the Fundamental Research Funds for the Central Universities, China (No.090314380036), the National Postdoctoral Program for Innovative Talents, China(No.BX2021123), the China Postdoctoral Science Foundation (No.2021M691505), and the Jiangsu Postdoctoral Research Funding Program, China(No.2021K125B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbao Fang, Yuncong Chen, Weijiang He or Zijian Guo.

Ethics declarations

The authors declare no conflicts of interest.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Fang, H., Ji, Y. et al. Rational Design of Ratiometric Fe3+ Fluorescent Probes Based on FRET Mechanism. Chem. Res. Chin. Univ. 38, 67–74 (2022). https://doi.org/10.1007/s40242-021-1398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1398-6

Keywords

Navigation