Skip to main content

Advertisement

Log in

Multilayer Porous Vanadium Nitride Microsheets Anodes for Highly Stable Na-ion Batteries

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Sodiumion batteries(SIBs) have attracted intensive attention as promising alternative to lithium-ionbatteries(LIBs) for large scale energy storage systems because of low cost of sodium, similar energy storage mechanism and the reasonable performance. However, it is still a great challenge to search and design a robust structure of anode materials with excellent cycling stability and high rate capability for SIBs. Herein, multilayer porous vanadium nitride (VN) microsheets are synthesized through a facile and scalable hydrothermal synthesis-nitrogenization strategy as an effective anode material for SIBs. The multilayer porous VN microsheets not only offer more active sites for fast Na+ insertion/extraction process and short diffusion pathway, but also effectively buffer the volume change of anode due to more space in the multilayer porous structure. The large proportions of capacitive behavior imply that the Na+ charge storage depends on the intercalation pseudocapacitive mechanism. The multilayer porous VN microsheets electrodes manifest excellent cycling stability and rate capability, delivering a discharge capacity of 156.1 mA·h/g at 200 mA/g after 100 cycles, and a discharge capacity of 111.9 mA·h/g at 1.0 A/g even after 2300 cycles with the Coulombic efficiency of nearly 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang L., Sun J. G., Song R. R., Yang S. B., Song H. H., Adv. Energy Mater., 2016, 6, 1502067

    Article  Google Scholar 

  2. Wang S., Wang L., Zhu Z., Hu Z., Zhao Q., Chen J., Angew. Chem. Int. Ed., 2014, 53, 5892

    Article  CAS  Google Scholar 

  3. Lee H. W., Wang R. Y., Pasta M., Lee S. W., Liu N., Cui Y., Nat. Commun., 2014, 5, 5280

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y., Xiao R., Hu Y. S., Avdeev M., Chen L., Nat. Commun., 2015, 6, 6954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hu Y. X., Zhang K., Hu H., Wang S. C., Ye D. L., Monteiro M. J., Jia Z. F., Wang L. Z., Mater. Chem. Front., 2018, 2, 1805

    Article  CAS  Google Scholar 

  6. Xie M., Wang K. K., Chen R. J., Li L., Wu F., Chem. Res. Chinese Universities, 2015, 31(3), 443

    Article  CAS  Google Scholar 

  7. Pan L., Dong J. Y., Yi D., Yang Y. J., Wang Xi., Chem. Res. Chinese Universities, 2020, 36(4), 560

    Article  CAS  Google Scholar 

  8. Yuan J., Hu X., Chen J. X., Liu Y. J., Huang T. Z., Wen Z. H., J. Mater. Chem. A, 2019, 7, 9289

    Article  CAS  Google Scholar 

  9. Slater M. D., Kim D., Lee E., Johnson C. S., Adv. Funct. Mater., 2013, 23, 947

    Article  CAS  Google Scholar 

  10. Wen Y., He K., Zhu Y., Han F., Xu Y., Matsuda I., Ishii Y., Cumings J., Wang C., Nat. Commun., 2014, 5, 4033

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y., Zhang N., Jiao L., Chen J., Adv. Mater., 2015, 27, 6702

    Article  CAS  PubMed  Google Scholar 

  12. Sun J., Lee H. W., Pasta M., Yuan H., Zheng G., Sun Y., Li Y., Cui Y., Nat. Nanotechnol., 2015, 10, 980

    Article  CAS  PubMed  Google Scholar 

  13. He J., Wei Y. Q., Zhai T. Y., Li H. Q., Mater. Chem. Front., 2018, 2, 437

    Article  CAS  Google Scholar 

  14. Su D. W., Kretschmer K., Wang G. X., Adv. Energy Mater., 2016, 6, 1501785

    Article  Google Scholar 

  15. Ko Y. N., Park S. B., Kang Y. C., Small, 2014, 10, 3240

    Article  CAS  PubMed  Google Scholar 

  16. Wang Z., Zhou L., Lou X. W., Adv. Mater., 2012, 24, 1903

    Article  CAS  PubMed  Google Scholar 

  17. Lin J., Raji A. R. O., Nan K., Peng Z., Yan Z., Samuel E. L. G., Natelson D., Tour J. M., Adv. Funct. Mater., 2014, 24, 2044

    Article  CAS  Google Scholar 

  18. Zhang K., Park M., Zhou L., Lee G. H., Shin J., Hu Z., Chou S. L., Chen J., Kang Y. M., Angew. Chem., 2016, 55, 12822

    Article  CAS  Google Scholar 

  19. Wu C., Wei Y. H., Lian Q. W., Cui C., Wei W. F., Chen L. B., Li C. C., Mater. Chem. Front., 2017, 1, 2656

    Article  CAS  Google Scholar 

  20. Meduri P., Clark E., Kim J. H., Dayalan E., Sumanasekera G. U., Sunkara M. K., Nano Lett., 2012, 12, 1784

    Article  CAS  PubMed  Google Scholar 

  21. Zhang K. J., Zhang L. X., Chen X., He X., Wang X. G., Dong S. M., Gu L., Liu Z. H., Huang C. S., Cui G. L., ACS Appl. Mater. Interfaces, 2013, 5, 3677

    Article  CAS  PubMed  Google Scholar 

  22. Dong S. M., Chen X., Gu L., Zhou X. H., Wang H. B., Liu Z. H., Han P. X., Yao J. H., Wang L., Cui G. L., Chen L. Q., Materials Research Bulletin, 2011, 46, 835

    Article  CAS  Google Scholar 

  23. Sun Q., Fu Z.-W., Electrochim. Acta, 2008, 54, 403

    Article  CAS  Google Scholar 

  24. Kundu D., Krumeich F., Fotedar R., Nesper R., J. Power Sources, 2015, 278, 608

    Article  CAS  Google Scholar 

  25. Dong S. M., Chen X., Zhang X. Y., Cui G. L., Coordination Chemistry Reviews, 2013, 257, 1946

    Article  CAS  Google Scholar 

  26. Wu Y., Ran F., J. Power Sources, 2017, 344, 1

    Article  CAS  Google Scholar 

  27. Yang Y., Zhao L., Shen K., Liu Y., Zhao X., Wu Y., Wang Y., Ran F., J. Power Sources, 2016, 333, 61

    Article  CAS  Google Scholar 

  28. Wu H., Yu Q., Lao C.-Y., Qin M., Wang W., Liu Z., Man C., Wang L., Jia B., Qu X., Energy Storage Mater., 2019, 18, 43

    Article  Google Scholar 

  29. Liu R. Q., Liu W. H., Bu Y. L., Yang W. W., Wang C., Priest C., Liu Z. W., Wang Y. Z., Chen J. Y., Wang Y. H., Cheng J., Lin X. J., Feng X. M., Wu G., Ma Y. W., Huang W., ACS Nano, 2020, 14, 17308

    Article  CAS  Google Scholar 

  30. Song Y. Z., Zhao S. Y., Chen Y. R., Cai J. S., Li J., Yang Q.-H., Sun J. Y., Liu Z. F., ACS Appl. Mater. Interfaces, 2019, 11, 5687

    Article  CAS  PubMed  Google Scholar 

  31. Li X. L., Tang R. W., Hu K., Zhang L. Y., Ding Z. Q., Electrochim. Acta, 2016, 210, 734

    Article  CAS  Google Scholar 

  32. Wang P., Zhang Z. A., Hong B., Zhang K., Li J., Lai Y. Q., Electroanal. Chem., 2019, 832, 475

    Article  CAS  Google Scholar 

  33. Zhang K., Wang H., He X., Liu Z., Wang L., Gu L., Xu H., Han P., Dong S., Zhang C., Yao J., Cui G., Chen L., J. Mater. Chem., 2011, 21, 11916

    Article  CAS  Google Scholar 

  34. Yao H. R., Wang P. F., Wang Y., Yu X. Q., Yin Y. X., Guo Y. G., Adv. Energy Mater., 2017, 7, 1700189

    Article  Google Scholar 

  35. Zhao X., Cai W., Yang Y., Song X., Neale Z., Wang H.-E., Sui J., Cao G., Nano Energy, 2018, 47, 224

    Article  CAS  Google Scholar 

  36. Wei S. Q., Wang C. D., Chen S. M., Zhang P. J., Zhu K. F., Wu C. Q., Song P., Wen W., Song L., Adv. Energy Mater., 2020, 10, 1903712

    Article  CAS  Google Scholar 

  37. Zhou L., Zhang K., Sheng J., An Q., Tao Z., Kang Y.-M., Chen J., Mai L., Nano Energy, 2017, 35, 281

    Article  CAS  Google Scholar 

  38. Xu X., Zhao R., Ai W., Chen B., Du H., Wu L., Zhang H., Huang W., Yu T., Adv. Mater., 2018, 30, 1800658

    Article  Google Scholar 

  39. Dong Y., Wang B., Zhao K., Yu Y., Wang X., Mai L., Jin S., Nano Lett., 2017, 17, 5740

    Article  CAS  PubMed  Google Scholar 

  40. Cook J. B., Kim H. S., Yan Y., Ko J. S., Robbennolt S., Dunn B., Tolbert S. H., Adv. Energy Mater., 2016, 6, 1501937

    Article  Google Scholar 

  41. Sun R. M., Wei Q. L., Sheng J. Z., Shi C. W., An Q. Y., Liu S. J., Mai L. Q., Nano Energy, 2017, 35, 396

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.91963119, 51772157, 21805140, 21905141), the Priority Academic Development Program of the Jiangsu Higher Education Institutions, China (No.YX030003), the China Postdoctoral Science Foundation(No.2018M642287), the Jiangsu Province Postdoctoral Research Grant Program, China (No.2018K156C), the Jiangsu National Synergetic Innovation Center for Advanced Materials, China(SICAM), the Project of the Synergetic Innovation Center for Organic Electronics and Information Displays, and the Australian Research Council, China(No.DE190100445).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruiqing Liu or Yanwen Ma.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, T., Yang, W., Wang, C. et al. Multilayer Porous Vanadium Nitride Microsheets Anodes for Highly Stable Na-ion Batteries. Chem. Res. Chin. Univ. 37, 286–292 (2021). https://doi.org/10.1007/s40242-021-0443-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-0443-9

Keywords

Navigation