Skip to main content

Advertisement

Log in

Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Sodium-ion batteries (SIBs) have received intensive attentions owing to the abundant and inexpensive sodium (Na) resource. Layered vanadium oxides are featured with various valence states and corresponding compounds, and through multi-electron reaction they are capable to deliver high Na storage capacity. The rational construction of unique structures is verified to improve their Na storage properties. This perspective provides an overview of recent advances in layered vanadium oxide for SIBs, with a particular focus on construction of novel nano-structures, and mechanism studies via in situ characterization. Finally, we predict possible breakthroughs and future trends that lie ahead for high-performance layered vanadium oxides SIBs cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Table 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. M. Armand and J.M. Tarascon: Building better batteries. Nature 451, 652 (2008).

    CAS  Google Scholar 

  2. J.B. Goodenough and K.S. Park: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167 (2013).

    CAS  Google Scholar 

  3. L. Mai, X. Tian, X. Xu, L. Chang, and L. Xu: Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 114, 11828 (2014).

    CAS  Google Scholar 

  4. M.D. Slater, D. Kim, E. Lee, and C.S. Johnson: Sodium-ion batteries. Adv. Funct. Mater. 23, 947 (2013).

    Article  CAS  Google Scholar 

  5. V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, and T. Rojo: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884 (2012).

    CAS  Google Scholar 

  6. S.W. Kim, D.H. Seo, X. Ma, G. Ceder, and K. Kang: Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lith-ium-ion batteries. Adv. Energy Mater. 2, 710 (2012).

    CAS  Google Scholar 

  7. S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, and G. Ceder: Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680 (2011).

    CAS  Google Scholar 

  8. L. Mai, X. Xu, L. Xu, C. Han, and Y. Luo: Vanadium oxide nanowires for Li-ion batteries. J. Mater. Res. 26, 2175 (2011).

    CAS  Google Scholar 

  9. Q. An, F. Lv, Q. Liu, C. Han, K. Zhao, J. Sheng, Q. Wei, M. Yan, and L. Mai: Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett. 14, 6250 (2014).

    CAS  Google Scholar 

  10. D. Murphy, P. Christian, F. DiSalvo, and J. Waszczak: Lithium incorporation by vanadium pentoxide. Inorg. Chem. 18, 2800 (1979).

    CAS  Google Scholar 

  11. N.A. Chernova, M. Roppolo, A.C. Dillon, and M.S. Whittingham: Layered vanadium and molybdenum oxides: batteries and electrochromics. J. Mater. Chem. 19, 2526 (2009).

    CAS  Google Scholar 

  12. J.I. Sohn, H.J. Joo, D. Ahn, H.H. Lee, A.E. Porter, K. Kim, D.J. Kang, and M.E. Welland: Surface-stress-induced Mott transition and nature of associated spatial phase transition in single crystalline VO2 nanowires. Nano Lett. 9, 3392 (2009).

    CAS  Google Scholar 

  13. K.A. Wilhelmi, K. Waltersson, and L. Kihlborg: A refinement of the crystal structure of V6O13. Acta Chem. Scand. 25, 2675 (1971).

    CAS  Google Scholar 

  14. P.Y. Zavalij and M.S. Whittingham: Structural chemistry of vanadium oxides with open frameworks. Acta Crystallogr. B 55, 627 (1999).

    CAS  Google Scholar 

  15. Y. Oka, T. Yao, N. Yamamoto, Y. Ueda and A. Hayashi: Phase transition and V4+-V4+ pairing in VO2(B). J. Solid State Chem. 105, 271 (1993).

    CAS  Google Scholar 

  16. Z. Jian, W. Han, X. Lu, H. Yang, Y.S. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, D. Chen, and L. Chen: Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 156 (2013).

    CAS  Google Scholar 

  17. S. Li, Y. Dong, L. Xu, X. Xu, L. He, and L. Mai: Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater. 26, 3545 (2014).

    CAS  Google Scholar 

  18. Y. Dong, S. Li, K. Zhao, C. Han, W. Chen, B. Wang, L. Wang, B. Xu, Q. Wei, and L. Zhang: Hierarchical zigzag Na1.25V3O8 nanowires with top-otactically encoded superior performance for sodium-ion battery cathodes. Energy Environ. Sci. 8, 1267 (2015).

    CAS  Google Scholar 

  19. Q. Wang, B. Zhao, S. Zhang, X. Gao, and C. Deng: Superior sodium intercalation of honeycomb-structured hierarchical porous Na3V2(PO4)3/C microballs prepared by a facile one-pot synthesis. J. Mater. Chem. A 3, 7732 (2015).

    CAS  Google Scholar 

  20. V. Raju, J. Rains, C. Gates, W. Luo, X. Wang, W.F. Stickle, G.D. Stucky, and X. Ji: Superior cathode of sodium-ion batteries: orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett. 14, 4119 (2014).

    CAS  Google Scholar 

  21. L. Mai, Q. Wei, Q. An, X. Tian, Y. Zhao, X. Xu, L. Xu, L. Chang, and Q. Zhang: Nanoscroll buffered hybrid nanostructural VO2(B) cathodes for high-rate and long-life lithium storage. Adv. Mater. 25, 2969 (2013).

    CAS  Google Scholar 

  22. E. Baudrin, G. Sudant, D. Larcher, B. Dunn, and J.M. Tarascon: Preparation of nanotextured VO2(B) from vanadium oxide aerogels. Chem. Mater. 18, 4369 (2006).

    CAS  Google Scholar 

  23. R. Li and C.Y. Liu: VO2(B) nanospheres: hydrothermal synthesis and electrochemical properties. Mater. Res. Bull. 45, 688 (2010).

    CAS  Google Scholar 

  24. L. Zhang, K. Zhao, W. Xu, J. Meng, L. He, Q. An, X. Xu, Y. Luo, T. Zhao, and L. Mai: Mesoporous VO2 nanowires with excellent cycling stability and enhanced rate capability for lithium batteries. RSC Adv. 4, 33332 (2014).

    CAS  Google Scholar 

  25. C. Nethravathi, C.R. Rajamathi, M. Rajamathi, U.K. Gautam, X. Wang, D. Golberg, and Y. Bando: N-doped graphene–VO2(B) nanosheet-built 3D flower hybrid for lithium ion battery. ACS Appl. Mater. Interface 5, 2708 (2013).

    CAS  Google Scholar 

  26. C. Niu, J. Meng, C. Han, K. Zhao, M. Yan, and L. Mai: VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 14, 2873 (2014).

    CAS  Google Scholar 

  27. E. Uchaker, M. Gu, N. Zhou, Y. Li, C. Wang and G. Cao: Enhanced intercalation dynamics and stability of engineered micro/nano-structured electrode materials: vanadium oxide mesocrystals. Small 9, 3880 (2013).

    CAS  Google Scholar 

  28. W. Wang, B. Jiang, L. Hu, Z. Lin, J. Hou, and S. Jiao: Single crystalline VO2 nanosheets: a cathode material for sodium-ion batteries with high rate cycling performance. J. Power Sources 250, 181 (2014).

    CAS  Google Scholar 

  29. D. Chao, C. Zhu, X. Xia, J. Liu, X. Zhang, J. Wang, P. Liang, J. Lin, H. Zhang, and Z.X. Shen: Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett. 15, 565 (2015).

    CAS  Google Scholar 

  30. M.S. Balogun, Y. Luo, F. Lyu, F. Wang, H. Yang, H. Li, C. Liang, M. Huang, Y. Huang, and Y. Tong: Carbon quantum dot surface-engineered VO2 interwoven nanowires: a flexible cathode material for lithium and sodium ion batteries. ACS Appl. Mater. Interface 8, 15 (2016).

    Google Scholar 

  31. G. He, L. Li, and A. Manthiram: VO2/rGO nanorods as a potential anode for sodium-and lithium-ion batteries. J. Mater. Chem. A 3, 28 (2015).

    Google Scholar 

  32. G. Ali, J.H. Lee, S.H. Oh, B.W. Cho, K.W. Nam, and K.Y. Chung: Investigation of the Na intercalation mechanism into nanosized V2O5/C composite cathode material for Na-ion batteries. ACS Appl. Mater. Interface 8, 9 (2016).

    Google Scholar 

  33. D. Su, S. Dou, and G. Wang: Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries. J. Mater. Chem. A 2, 11185 (2014).

    CAS  Google Scholar 

  34. S. Tepavcevic, H. Xiong, V.R. Stamenkovic, X. Zuo, M. Balasubramanian, V.B. Prakapenka, C.S. Johnson, and T. Rajh: Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6, 530 (2012).

    CAS  Google Scholar 

  35. D. Su and G. Wang: Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 7, 11218 (2013).

    CAS  Google Scholar 

  36. K. Zhu, C. Zhang, S. Guo, H. Yu, K. Liao, G. Chen, Y. Wei, and H. Zhou: Sponge-like cathode material self-assembled from two-dimensional V2O5 nanosheets for sodium-ion batteries. ChemElectroChem 2, 1660 (2015).

    CAS  Google Scholar 

  37. D. McNulty, D.N. Buckley, and C. O’Dwyer: Synthesis and electrochemical properties of vanadium oxide materials and structures as Li-ion battery positive electrodes. J. Power Sources 267, 831 (2014).

    CAS  Google Scholar 

  38. M. Giorgetti, S. Passerini, W.H. Smyrl, and M. Berrettoni: Evidence of bilayer structure in V2O5 xerogel. Inorg. Chem. 39, 1514 (2000).

    CAS  Google Scholar 

  39. A. Moretti and S. Passerini: Bilayered nanostructured V2O5•nH2O for metal batteries. Adv. Energy Mater. (2016). DOI: 10.1002/aenm.201600868.

    Google Scholar 

  40. V. Petkov, P.N. Trikalitis, E.S. Bozin, S.J. Billinge, T. Vogt, and M. G. Kanatzidis: Structure of V2O5•nH2O xerogel solved by the atomic pair distribution function technique. J. Am. Chem. Soc. 124, 10157 (2002).

    CAS  Google Scholar 

  41. A. Moretti, F. Maroni, I. Osada, F. Nobili, and S. Passerini: V2O5 aerogel as a versatile cathode material for lithium and sodium batteries. ChemElectroChem 2, 529 (2015).

    CAS  Google Scholar 

  42. Q. Wei, J. Liu, W. Feng, J. Sheng, X. Tian, L. He, Q. An, and L. Mai: Hydrated vanadium pentoxide with superior sodium storage capacity. J. Mater. Chem. A 3, 8070 (2015).

    CAS  Google Scholar 

  43. Q. Wei, Z. Jiang, S. Tan, Q. Li, L. Huang, M. Yan, L. Zhou, Q. An, and L. Mai: Lattice breathing inhibited layered vanadium oxide ultrathin nano-belts for enhanced sodium storage. ACS Appl. Mater. Inter. 7, 18211 (2015).

    CAS  Google Scholar 

  44. A. Moretti, S. Jeong, and S. Passerini: Enhanced cycling ability of V2O5 aerogel using room-temperature ionic liquid-based electrolytes. Chem ElectroChem. (2016). DOI: 10.1002/celc.201600040.

    Google Scholar 

  45. A. Moretti, M. Secchiaroli, D. Buchholz, G. Giuli, R. Marassi, and S. Passerini: Exploring the low voltage behavior of V2O5 aerogel as intercalation host for sodium ion battery. J. Electrochem. Soc. 14, A2723 (2015).

    Google Scholar 

  46. X. Sun, C. Zhou, M. Xie, T. Hu, H. Sun, G. Xin, G. Wang, S.M. George, and J. Lian: Amorphous vanadium oxide coating on graphene by atomic layer deposition for stable high energy lithium ion anodes. Chem. Commun. 50, 10703 (2014).

    CAS  Google Scholar 

  47. J. Sheng, Q. Li, Q. Wei, P. Zhang, Q. Wang, F. Lv, Q. An, W. Chen, and L. Mai: Metastable amorphous chromium-vanadium oxide nanoparticles with superior performance as a new lithium battery cathode. Nano Res. 7, 1604 (2014).

    CAS  Google Scholar 

  48. O.B. Chae, J. Kim, I. Park, H. Jeong, J.H. Ku, J.H. Ryu, K. Kang, and S. M. Oh: Reversible lithium storage at highly populated vacant sites in an amorphous vanadium pentoxide electrode. Chem. Mater. 26, 5874 (2014).

    CAS  Google Scholar 

  49. K. Salloux, F. Chaput, H. Wong, B. Dunn, and M. Breiter: Lithium intercalation in vanadium pentoxide aerogels. J. Electrochem. Soc. 142, L191 (1995).

    CAS  Google Scholar 

  50. D. Le, S. Passerini, J. Guo, J. Ressler, B. Owens, and W. Smyrl: High surface area V2O5 aerogel intercalation electrodes. J. Electrochem. Soc. 143, 2099 (1996).

    CAS  Google Scholar 

  51. D.R. Rolison and B. Dunn: Electrically conductive oxide aerogels: new materials in electrochemistry. J. Mater. Chem. 11, 963 (2001).

    CAS  Google Scholar 

  52. E. Uchaker, Y. Zheng, S. Li, S. Candelaria, S. Hu, and G. Cao: Better than crystalline: amorphous vanadium oxide for sodium-ion batteries. J. Mater. Chem. A 2, 18208 (2014).

    CAS  Google Scholar 

  53. S. Liu, Z. Tong, J. Zhao, X. Liu, J. Wang, X. Ma, C. Chi, Y. Yang, X. Liu, and Y. Li: Rational selection of amorphous or crystalline V2O5 cathode for sodium-ion batteries. Phys. Chem. Chem. Phys. 18, 25645 (2016).

    CAS  Google Scholar 

  54. Z. Jian, C. Yuan, W. Han, X. Lu, L. Gu, X. Xi, Y.S. Hu, H. Li, W. Chen, and D. Chen: Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries. Adv. Funct. Mater. 24, 4265 (2014).

    CAS  Google Scholar 

  55. K. Saravanan, C.W. Mason, A. Rudola, K.H. Wong, and P. Balaya: The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 3, 444 (2013).

    CAS  Google Scholar 

  56. Z. Jian, L. Zhao, H. Pan, Y.-S. Hu, H. Li, W. Chen, and L. Chen: Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 14, 86 (2012).

    CAS  Google Scholar 

  57. W. Shen, C. Wang, H. Liu, and W. Yang: Towards highly stable storage of sodium ions: a porous Na3V2(PO4)3/C cathode material for sodium-ion batteries. Chem.–Eur. J. 19, 14712 (2013).

    CAS  Google Scholar 

  58. J. Liu, K. Tang, K. Song, P.A. van Aken, Y. Yu, and J. Maier: Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale 6, 5081 (2014).

    CAS  Google Scholar 

  59. W. Shen, H. Li, Z. Guo, C. Wang, Z. Li, Q. Xu, H. Liu, Y.G. Wang, and Y. Xia: Double nano-carbon synergistically modified Na3V2(PO4)3: an advanced cathode for high-rate and long life sodium-ion batteries. ACS Appl. Mater. Interface 8, 24 (2016).

    Google Scholar 

  60. Y. Fang, L. Xiao, X. Ai, Y. Cao, and H. Yang: Hierarchical carbon framework wrapped Na3V2 (PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 27, 5895 (2015).

    CAS  Google Scholar 

  61. Y. Xu, Q. Wei, C. Xu, Q. Li, Q. An, P. Zhang, J. Sheng, L. Zhou, and L. Mai: Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv. Energy Mater. 6, 1600389 (2016).

    Google Scholar 

  62. W. Ren, Z. Zheng, C. Xu, C. Niu, Q. Wei, Q. An, K. Zhao, M. Yan, M. Qin, and L. Mai: Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries. Nano Energy 25, 145 (2016).

    CAS  Google Scholar 

  63. X. Wang, C. Niu, J. Meng, P. Hu, X. Xu, X. Wei, L. Zhou, K. Zhao, W. Luo, M. Yan, and L. Mai: Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv. Energy Mater. 5, 1500716 (2015).

    Google Scholar 

  64. X. Ma, W. Luo, M. Yan, L. He, and L. Mai: In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices. Nano Energy 24, 165 (2016).

    CAS  Google Scholar 

  65. J. Wan, F. Shen, W. Luo, L. Zhou, J. Dai, X. Han, W. Bao, Y. Xu, J. Panagiotopoulos, and X. Fan: In situ transmission electron microscopy observation of sodiation-desodiation in a long cycle, high-capacity reduced graphene oxide sodium-ion battery anode. Chem. Mater. 28, 6528 (2016).

    CAS  Google Scholar 

  66. X. Lu, E.R. Adkins, Y. He, L. Zhong, L. Luo, S.X. Mao, C.M. Wang, and B. A. Korgel: Germanium as a sodium ion battery material: in situ TEM reveals fast sodiation kinetics with high capacity. Chem. Mater. 28, 1236 (2016).

    CAS  Google Scholar 

  67. C. Niu, X. Liu, J. Meng, L. Xu, M. Yan, X. Wang, G. Zhang, Z. Liu, X. Xu, and L. Mai: Three dimensional V2O5/NaV6O15 hierarchical heterostruc-tures: controlled synthesis and synergistic effect investigated by in situ X-ray diffraction. Nano Energy 27, 147 (2016).

    CAS  Google Scholar 

  68. X.H. Liu, Y. Liu, A. Kushima, S. Zhang, T. Zhu, J. Li, and J.Y. Huang: In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2, 722 (2012).

    CAS  Google Scholar 

  69. M. Guignard, C. Didier, J. Darriet, P. Bordet, E. Elkaïm, and C. Delmas: P2-NaxVO2 system as electrodes for batteries and electron-correlated materials. Nat. Mater. 12, 74 (2012).

    Google Scholar 

  70. Y. Wang and G. Cao: Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem. Mater. 18, 2787 (2006).

    Google Scholar 

  71. R. Shakoor, D.H. Seo, H. Kim, Y.U. Park, J. Kim, S.W. Kim, H. Gwon, S. Lee, and K. Kang: A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J. Mater. Chem. 22, 20535 (2012).

    CAS  Google Scholar 

  72. K. Ogata, E. Salager, C. Kerr, A. Fraser, C. Ducati, A. Morris, S. Hofmann, and C.P. Grey: Revealing lithium–silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectro-scopy. Nat. Commun. 5, 3217 (2014).

    CAS  Google Scholar 

  73. K.H. Wujcik, T.A. Pascal, C. Pemmaraju, D. Devaux, W.C. Stolte, N. P. Balsara, and D. Prendergast: Characterization of polysulfide radicals present in an ether-based electrolyte of a lithium–sulfur battery during initial discharge using in situ X-ray absorption spectroscopy experiments and first principles calculations. Adv. Energy Mater. 5, 1500285 (2015).

    Google Scholar 

  74. F. Shi, P.N. Ross, H. Zhao, G. Liu, G.A. Somorjai, and K. Komvopoulos: A catalytic path for electrolyte reduction in lithium-ion cells revealed by in situ attenuated total reflection-fourier transform infrared spectroscopy. J. Am. Chem. Soc. 137, 3181 (2015).

    CAS  Google Scholar 

  75. G. Venkatesh, V. Pralong, O. Lebedev, V. Caignaert, P. Bazin, and B. Raveau: Amorphous sodium vanadate Na1.5+yVO3, a promising matrix for reversible sodium intercalation. Electrochem. Commun. 40, 100 (2014).

    CAS  Google Scholar 

  76. E. Uchaker and G. Cao: The role of intentionally introduced defects on electrode materials for alkali-ion batteries. Chem.–Asian J. 10, 1608 (2015).

    CAS  Google Scholar 

  77. S. Komaba, T. Ishikawa, N. Yabuuchi, W. Murata, A. Ito, and Y. Ohsawa: Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Inter. 3, 4165 (2011).

    CAS  Google Scholar 

  78. Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, and J. Chen: Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 8, 1309 (2015).

    CAS  Google Scholar 

  79. A. Darwiche, C. Marino, M.T. Sougrati, B. Fraisse, L. Stievano, and L. Monconduit: Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J. Am. Chem. Soc. 134, 20805 (2012).

    CAS  Google Scholar 

  80. S. Yuan, X. Huang, D. Ma, H. Wang, F. Meng, and X. Zhang: Engraving copper foil to give large-scale binder-free porous CuO arrays for a highperformance sodium-ion battery anode. Adv. Mater. 26, 2273 (2014).

    CAS  Google Scholar 

  81. M. Dahbi, T. Nakano, N. Yabuuchi, T. Ishikawa, K. Kubota, M. Fukunishi, S. Shibahara, J.Y. Son, Y.T. Cui, and H. Oji: Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries. Electrochem. Commun. 44, 66 (2014).

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Key Research and Development Program of China (2016YFA0202603), the National Basic Research Program of China (2013CB934103), the Programme of Introducing Talents of Discipline to Universities (B17034), the National Natural Science Foundation of China (51521001), the National Natural Science Fund for Distinguished Young Scholars (51425204), and the Fundamental Research Funds for the Central Universities (WUT: 2016-JL-004, 2016III001 and 2017III009). Prof. Dr. Liqiang Mai gratefully acknowledged financial support from China Scholarship Council (Grant no. 201606955096).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Jacques Gaumet or Liqiang Mai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Gaumet, JJ. & Mai, L. Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective. MRS Communications 7, 152–165 (2017). https://doi.org/10.1557/mrc.2017.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.25

Navigation