Skip to main content
Log in

Synergistic Effects of External Electric Field and Solvent Vapor Annealing with Different Polarities to Enhance β-Phase and Carrier Mobility of the Poly(9,9-dioctylfluorene) Films

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

In this work, the synergistic effects of external electric field(EEF) and solvent vapor annealing to enhance β-phase and carrier mobility of poly(9,9-dioctylfluorene)(PFO) films were investigated. It is found that EEF can promote the PFO β-phase conformation transition and orientate the PFO chains along the EEF direction with the assistance of polar solvent vapor annealing. PFO chain orderness is closely related to the solvent polarity. In particular, the β-phase content in the annealed film of strong polar chloroform vapor increases from 18.7% to 34.9% after EEF treatment. Meanwhile a characteristic needle-like crystal is formed in the film, as a result, the hole mobility is enhanced by an order of magnitude. The mechanism can be attributed to the fast polarization of solvent dipole under the action of EEF, thus forming a driving force that greatly facilitates the orientation of PFO dipole unit. Research also reveals that EEF driving of the PFO chains does not occur with an insoluble solvent vapor since the solvent molecules cannot swell the film, thus there is insufficient free volume for PFO chains to adjust their conformation. This research enriches the understanding of the relationship between solvent vapor annealing and EEF in orientation polymers, and this method is simple and controlled, and capable of integrating into large-area thin film process, which provides new insights to manufacture low-cost and highly ordered polymer films, and is of great significance to enhance carrier mobility and efficiency of photoelectric devices based on polymer condensed matter physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Subbiah J., Purushothaman B., Chen M., Qin T., Gao M., Vak D., Scholes F. H., Chen X., Watkins S. E., Wilson G. J., Holmes A. B., Wong W. W. H., Jones D. J., Adv. Mater., 2015, 27, 702

    CAS  PubMed  Google Scholar 

  2. Liao S. H., Jhuo H. J., Yeh P. N., Cheng Y. S., Li Y. L., Lee Y. H., Sharma S., Chen S. A., Sci. Rep., 2014, 4, 6813

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim N. K., Jang S. Y., Pace G., Caironi M., Park W. T., Khim D., Kim J., Kim D. Y., Noh Y. Y., Chem. Mater., 2015, 27, 8345

    CAS  Google Scholar 

  4. Herguth P., Jiang X., Liu M. S., Jen A. K. Y., Macromolecules, 2002, 35, 6094

    CAS  Google Scholar 

  5. Shu C. F., Dodda R., Wu F. I., Liu M. S., Jen A. K. Y., Macromolecules, 2003, 36, 6698

    CAS  Google Scholar 

  6. Xia C., Advincula R. C., Macromolecules, 2001, 34, 5854

    CAS  Google Scholar 

  7. Chen S. H., Su A. C., Su C. H., Chen S. A., Macromolecules, 2005, 38, 379

    CAS  Google Scholar 

  8. Chunwaschirasiri W., Tanto B., Huber D. L., Winokur M. J., Phys. Rev. Lett., 2005, 94, 107402

    CAS  PubMed  Google Scholar 

  9. Bradley D. D., Grell M., Long X., Mellor H., Grice A. W., Inbasekaran M., Woo E. P., Proc. SPIE, 1997, 3145, 254

    CAS  Google Scholar 

  10. Winokur M. J., Slinker J., Huber D. L, Phys. Rev. B, 2003, 67, 184106

    Google Scholar 

  11. Lin Z. Q., Shi N. E., Li Y. B., Qiu D., Zhang L., Lin J. Y., Zhao J. F., Wang C., Xie L. H., Huang W., J. Phys. Chem. C, 2011, 115, 4418

    CAS  Google Scholar 

  12. Justino L. L. G., Ramos M. L., Knaapila M., Marques A. T., Kudla C. J., Scherf U., Almásy L., Schweins R., Burrows H. D., Macromolecules, 2015, 44, 334

    Google Scholar 

  13. Chen J. H., Chang C. S., Chang Y. X., Chen C. Y., Chen H. L., Chen S. A., Macromolecules, 2009, 42, 1306

    CAS  Google Scholar 

  14. Cadby A. J., Lane P. A., Mellor H., Martin S. J., Grell M., Giebeler C., Bradley D. D. C., Wohlgenannt M., An C., Vardeny Z. V., Phys. Rev. B, 2000, 62, 15604

    CAS  Google Scholar 

  15. Lu H. H., Liu C. Y., Chang C. H., Chen S. A., Adv. Mater., 2007, 19, 2574

    CAS  Google Scholar 

  16. Asada K., Kobayashi T., Naito H., Jpn. J. Appl. Phys., 2006, 45, 247

    Google Scholar 

  17. Becker K., Lupton J. M., J. Am. Chem. Soc., 2005, 127, 7306

    CAS  PubMed  Google Scholar 

  18. Wohlgenannt M., Jiang X. M., Vardeny Z. V., Janssen R. A., Phys. Rev. Lett., 2002, 88, 197401

    CAS  PubMed  Google Scholar 

  19. Prins P., Grozema F., Nehls B., Farrell T., Scherf U., Siebbeles L., Phys. Rev. B, 2006, 74, 113203

    Google Scholar 

  20. Jen T. H., Wang K. K., Chen S. A., Polymer, 2012, 53, 5850

    CAS  Google Scholar 

  21. Whitehead K. S., Grell M., Bradley D. D. C., Jandke M., Strohriegl P., Appl. Phys. Lett., 2000, 76, 2946

    CAS  Google Scholar 

  22. Redecker M., Bradley D. D. C., Inbasekaran M., Woo E. P., Appl. Phys. Lett., 1999, 74, 1400

    CAS  Google Scholar 

  23. Peet J., Brocker E., Xu Y., Bazan G. C., Adv. Mater., 2008, 20, 1882

    CAS  Google Scholar 

  24. Li X., Bai Z., Liu B., Li T., Lu D., J. Phys. Chem. C, 2017, 121, 14443

    CAS  Google Scholar 

  25. Khan A. L. T., Sreearunothai P., Herz L. M., Banach M. J., Köhler A., Phys. Rev. B, 2004, 69, 085201

    Google Scholar 

  26. Chen J. Y., Wu H. C., Chiu Y. C., Lin C. J., Tung S. H., Chen W. C., Adv. Electron. Mater., 2015, 1, 1400028

    Google Scholar 

  27. Xi Y., Pozzo L. D., Soft Matter, 2017, 13, 3894

    CAS  PubMed  Google Scholar 

  28. Ma T., Song N., Liu B., Ren J., Zhang H., Lu D., J. Phys. Chem. C, 2019, 123, 13993

    CAS  Google Scholar 

  29. Böker A., Elbs H., Hänsel H., Knoll A., Ludwigs S., Zettl H., Zvelindovsky A. V., Sevink G. J. A., Urban V., Abetz V., Müller A. H. E., Krausch G., Macromolecules, 2003, 36, 8078

    Google Scholar 

  30. Ye Z., Yang X., Cui H., Qiu F., J. Mater. Chem. C, 2014, 2, 6773

    CAS  Google Scholar 

  31. Wang S., Chen Z., Umar A., Wang Y., Yin P. G., RSC Adv., 2015, 5, 58499

    CAS  Google Scholar 

  32. Hao X. T., Chan N. Y., Dunstan D. E., Smith T. A., J. Phys. Chem. C, 2009, 113, 11657

    CAS  Google Scholar 

  33. Hui J., Hou Y., Shi Q., Meng X., Feng T., Solid State Commun., 2006, 555

  34. Lin C. C., Lin Y. Y., Li S. S., Yu C. C., Huang C. L., Lee S. H., Du C. H., Lee J. J., Chen H. L., Chen C. W., Energy Environ. Sci., 2011, 4, 2134

    CAS  Google Scholar 

  35. Lee S. W., Kim C. H., Lee S. G., Jeong J. H., Choi J. H., Lee E. S., Electron. Mater. Lett., 2013, 9, 471

    CAS  Google Scholar 

  36. Solanki A., Wu B., Salim T., Yeow E. K. L., Lam Y. M., Sum T. C., J. Phys. Chem. C, 2014, 118, 11285

    CAS  Google Scholar 

  37. Solanki A., Bagui A., Long G., Wu B., Salim T., Chen Y., Lam Y. M., Sum T. C., ACS Appl. Mater. Interfaces, 2016, 8, 32282

    CAS  PubMed  Google Scholar 

  38. Zhao C. X., Wang X., Zeng W., Chen Z. K., Ong B. S., Wang K., Deng L., Xu G., Appl. Phys. Lett., 2011, 99, 053305

    Google Scholar 

  39. Caruso M. E., Anni M., Phys. Rev. B, 2007, 76, 054207

    Google Scholar 

  40. Yang H., Qu K., Li H., Cheng H., Zhang J., Macromol. Chem. Phys., 2016, 217, 1579

    CAS  Google Scholar 

  41. Zhang G., Zhang P., Hu D., Chen H., Guo T. A., IEEE Trans. Electron Devices, 2018, 65, 1101

    CAS  Google Scholar 

  42. Knaapila M., Bright D. W., Stepanyan R., Torkkeli M., Almasy L., Schweins R., Vainio U., Preis E., Galbrecht F., Scherf U., Monkman A. P., Phys. Rev. E, 2011, 83, 051803

    CAS  Google Scholar 

  43. Caruso M. E., Lattante S., Cingolani R., Anni M., Appl. Phys. Lett., 2006, 88, 181906

    Google Scholar 

  44. Azuma H., Asada K., Kobayashi T., Naito H., Thin Solid Films, 2006, 509, 182

    CAS  Google Scholar 

  45. Bai Z., Liu Y., Li T., Li X., Liu B., Liu B., Lu D., J. Phys. Chem. C, 2016, 120, 27820

    CAS  Google Scholar 

  46. Knaapila M., Monkman A. P., Adv. Mater., 2013, 25, 1090

    CAS  PubMed  Google Scholar 

  47. Knaapila M., Garamus V. M., Dias F. B., Almásy L., Galbrecht F., Charas A., Morgado J., Burrows H. D., Scherf U., Monkman A. P., Macromolecules, 2006, 39, 6505

    CAS  Google Scholar 

  48. Ibnaouf K. H., Synthetic Metals, 2015, 209, 534

    CAS  Google Scholar 

  49. Perevedentsev A., Chander N., Kim J. S., Bradley D. D. C., J. Polym. Sci., Part B: Polym. Phys., 2016, 54, 1995

    CAS  Google Scholar 

  50. Eggimann H. J., Le Roux F., Herz L. M., J. Phys. Chem. Lett., 2019, 10, 1729

    CAS  PubMed  Google Scholar 

  51. Zhou W., Shi J., Lv L., Chen L., Chen Y. A., Phys. Chem. Chem. Phys., 2014, 17, 387

    Google Scholar 

  52. Botiz I., Stingelin N., Materials, 2014, 7, 2273

    PubMed  PubMed Central  Google Scholar 

  53. Yoann O., Dorota N., Vincent L., Wojciech P., Klaus M., Unsal K., Reynolds J. R., Roberto L., JérôMe C., David B., Adv. Mater., 2014, 26, 2119

    Google Scholar 

  54. Ariu M., Lidzey D. G., Lavrentiev M., Bradley D. D. C., Jandke M., Strohriegl P. A., Synth. Met., 2001, 116, 217

    CAS  Google Scholar 

  55. Lukaszczuk P., Borowiak-Palen E., Rümmeli M. H., Kalenczuk R. J., Phys. Status Solidi, 2010, 246, 2699

    Google Scholar 

  56. Ariu M., Lidzey D. G., Bradley D. D. C., Synthetic Metals, 2000, 111, 607

    Google Scholar 

  57. Yu M. N., Soleimaninejad H., Lin J. Y., Zuo Z. Y., Liu B., Bo Y. F., Bai L. B., Han Y. M., Smith T. A., Xu M., Wu X. P., Dunstan D. E., Xia R. D., Xie L. H., Bradley D. D. C., Huang W., J. Phys. Chem. Lett., 2018, 9, 364

    PubMed  Google Scholar 

  58. Volz C., Arif M., Guha S., J. Chem. Phys., 2007, 126, 064905

    CAS  PubMed  Google Scholar 

  59. Arif M., Volz C., Guha S., Phys. Rev. Lett., 2006, 96, 025503

    CAS  PubMed  Google Scholar 

  60. Liu C., Wang Q., Tian H., Liu J., Geng Y., Yan D., Macromolecules, 2013, 46, 3025

    CAS  Google Scholar 

  61. Skrypnychuk V., Wetzelaer G. J. A. H., Gordiichuk P. I., Mannsfeld S. C. B., Herrmann A., Toney M. F., Barbero D. R., Adv. Mater., 2016, 28, 2359

    CAS  PubMed  Google Scholar 

  62. Hu W. S., Weng S. Z., Tao Y. T., Liu H. J., Lee H. Y., Org. Electron., 2008, 9, 385

    CAS  Google Scholar 

  63. Aryal M., Trivedi K., Hu W., ACS Nano, 2009, 3, 3085

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Lu.

Additional information

Supported by the National Natural Science Foundation of China(Nos.91333103, 21574053).

Electronic Supplementary information (ESI) for

40242_2020_129_MOESM1_ESM.pdf

Synergistic Effects of External Electric Field and Solvent Vapor Annealing with Different Polarity to Enhance β-Phase and Carrier Mobility of the Poly(9,9-dioctylfluorene) Films

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Song, N., Qiu, J. et al. Synergistic Effects of External Electric Field and Solvent Vapor Annealing with Different Polarities to Enhance β-Phase and Carrier Mobility of the Poly(9,9-dioctylfluorene) Films. Chem. Res. Chin. Univ. 36, 1310–1319 (2020). https://doi.org/10.1007/s40242-020-0129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-0129-8

Keywords

Navigation