Skip to main content

Advertisement

Log in

Fluorescent Aptamer-Polyethylene Glycol Functionalized Graphene Oxide Biosensor for Profenofos Detection in Food

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

A biosensor based on self-assembled ssDNA(aptamer) and polyethylene glycol functionalized graphene oxide(GO-PEG) has been designed for sensing profenofos in food. The sensor has employed the fluorescence “on/off” switching strategy in a single step in homogeneous solution. Compared to traditional detection methods, the strategy proposed here is simple, convenient, fast and sensitive. Furthermore, compared with the general aptamer-GO structure, this aptamer-GO-PEG structure is in possession of a better detection performance, which is largely attributed to the improvement of the biocompatibility and the adjustment of the adsorption capacity of GO by grafting the blocking agent PEG onto the surface of GO. Additionally, the improved biocompatibility of GO shows better stability in salt solutions and physiological solutions, which is more conducive to its practical application in foods. In this project, profenofos had been detected with the proposed strategy, and the limit of detection has been controlled to be 0.21 ng/mL. This aptasensing assay has been applied to determining profenofos in (spiked)tap water, cabbage and milk with the recovery values ranging from 93.1% to 108.5%, from 90.8% to 113.2% and from 105.9% to 114.2%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo J., Jia N., Shi H. Y., Wang M. H., Environ. Sci. Technol., 2011, 34(6), 16

    CAS  Google Scholar 

  2. Zhang C. Z., Wang L., Tu Z., Sun X., He Q. H., Lei Z. J., Xu C. X., Liu Y., Zhang X., Yang J. Y., Liu X. J., Xu Y., Biosens. Bioelectron., 2014, 55, 216

    CAS  PubMed  Google Scholar 

  3. Åkerblom N., Agricultural Pesticide Toxicity to Aquatic Organisms: a Literature Review, Sveriges Lantbruks University, Uppsala, 2004

    Google Scholar 

  4. Fukuto T. R., Environ. Health Persp., 1990, 87, 245

    CAS  Google Scholar 

  5. Aceña J., Stampachiacchiere S., Pérez S., Barceló D., Anal. Bioanal. Chem., 2015, 407(21), 6289

    PubMed  Google Scholar 

  6. Chu X. G., Hu X. Z., Yao H. Y., J. Chromatogr. A, 2005, 1063(1/2), 201

    CAS  PubMed  Google Scholar 

  7. Frenich A. G., Bolanos P. P., Vidal J. L. M., J. Chromatogr. A, 2007, 1153(1/2), 194

    CAS  PubMed  Google Scholar 

  8. Qu L. J., Zhang H., Zhu J. H., Yang G. S., Aboul-Eneincd H. Y., Food Chem., 2010, 122(1), 327

    CAS  Google Scholar 

  9. Mahajan R., Chatterjee S., Environ. Monit. Assess, 2018, 190(6), 327

    PubMed  Google Scholar 

  10. Liang H. C., Bilon N., Hay M. T., Water Environ. Res., 2015, 87(10), 1923

    CAS  PubMed  Google Scholar 

  11. He J., Liu Y., Fan M., Liu X. J., J. Agr. Food Chem., 2011, 59(5), 1582

    CAS  Google Scholar 

  12. Tang Z. W., Shangguan D. H., Wang K., Shi H., Sefah K., Mallikratchy P., Chen H. W., Li Y., Tan W. H., Anal. Chem., 2007, 79(13), 4900

    CAS  PubMed  Google Scholar 

  13. Nimjee S. M., Rusconi C. P., Annu. Rev. Med., 2005, 56, 555

    CAS  PubMed  Google Scholar 

  14. Hayat A., Barthelmebs L., Marty J. L., Sensor Actuat. B: Chem., 2012, 171, 810

    Google Scholar 

  15. Song S. P., Wang L. H., Li J., Fan C. H., Zhao J. L., Trac-Trend Anal. Chem., 2008, 27(2), 108

    CAS  Google Scholar 

  16. Chen X., Hai X., Wang J., Anal. Chim. Acta, 2016, 922, 1

    CAS  PubMed  Google Scholar 

  17. Gao N. N., Gao F., He S. Y., Zhu Q. H., Huang J. F., Tanaka H., Wang Q. X., Anal. Chim. Acta, 2017, 951, 58

    CAS  PubMed  Google Scholar 

  18. Sreejith S., Ma X., Zhao Y., J. Am. Chem. Soc., 2012, 134(42), 17346

    CAS  PubMed  Google Scholar 

  19. Wang Y., Li Z. H., Weber T. J., Hu D. H., Lin C. T., Li J. H., Lin Y. H., Anal. Chem., 2013, 85(14), 6775

    CAS  PubMed  Google Scholar 

  20. Wang Y., Li Z. H., Hu D. H., Lin C. T., Li J. H., Lin Y. H., J. Am. Chem. Soc., 2010, 132(27), 9274

    CAS  PubMed  Google Scholar 

  21. Lu C. H., Yang H. H., Zhu C. L., Chen X., Chen G. N., Angew. Chem. Int. Ed., 2009, 48(26), 4785

    CAS  Google Scholar 

  22. Wang H. B., Zhang Q., Chu X., Chen T. T., Ge J., Yu R. Q., Angew. Chem. Int. Ed., 2011, 50(31), 7065

    CAS  Google Scholar 

  23. Gao L., Lian C. Q., Zhou Y., Yan L. R., Li Q., Zhang C. X., Chen L., Chen K. P., Biosens. Bioelectron., 2014, 60, 22

    CAS  PubMed  Google Scholar 

  24. Ha N. R., Jung I. P., La I. J., Jung H. S., Yoon M. Y., Sci. Rep. UK, 2017, 7, 40305

    CAS  Google Scholar 

  25. Wang H., Chen H., Huang Z. P., Li T. D., Deng A. M., Kong J. L., Talanta, 2018, 184, 219

    CAS  PubMed  Google Scholar 

  26. Cheng X., Cen Y., Xu G. H., Wei F. D., Shi M. L., Xu X. M., Sohail M. H., Hu Q., Microchim. Acta, 2018, 185(2), 144

    Google Scholar 

  27. Song Y., Li W. K., Duan Y. F., Li Z. J., Deng L., Biosens. Bioelectron., 2014, 55, 400

    CAS  PubMed  Google Scholar 

  28. Wu S. J., Duan N., Ma X. Y., Xia Y., Wang H. X., Wang Z. P., Zhang Q., Anal. Chem., 2012, 84, 6263

    CAS  PubMed  Google Scholar 

  29. Xing X. J., Liu X. G., He Y., Luo Q. Y., Tang H. W., Pang D. W., Biosens. Bioelectron., 2012, 37, 61

    CAS  PubMed  Google Scholar 

  30. Bai Y. F., Feng F., Zhao L., Chen Z. Z., Wang H. Y., Duan Y. L., Analyst, 2014, 139, 1843

    CAS  PubMed  Google Scholar 

  31. Cao L. L., Cheng L. W., Zhang Z. Y., Wang Y., Zhang X. X., Chen H., Liu B. H., Zhang S., Kong J. L., Lab Chip., 2012, 12, 4864

    CAS  PubMed  Google Scholar 

  32. Kushwaha H. S., Sao R., Vaish R., J. Appl. Phys., 2014, 116, 34701

    Google Scholar 

  33. He Y., Lin Y., Tang H., Pang D., Nano, 2012, 4, 2054

    CAS  Google Scholar 

  34. Gao L., Li Q., Li R. Q., Yan L. R., Zhou Y., Chen K. P., Shi H. X., Nano, 2015, 7, 10903

    CAS  Google Scholar 

  35. Chang H. X., Tang L. H., Wang Y., Jiang J. H., Li J. H., Anal. Chem., 2010, 82, 2341

    CAS  PubMed  Google Scholar 

  36. Yang L. M., Li J., Pan W., Wang H. Y., Li N., Tang B., Chem. Commun., 2018, 54(29), 3656

    CAS  Google Scholar 

  37. Yang L. M., Liu B., Wang M. M., Li J., Pan W., Gao X. N., Li N., Tang B., ACS Appl. Mater. Interfaces, 2018, 10(8), 6982

    CAS  PubMed  Google Scholar 

  38. Li D., Müller M. B., Gilje S., Kaner R. B., Wallace G. G., Nat. Nanotechnol., 2008, 3(2), 101

    CAS  PubMed  Google Scholar 

  39. Huang J. F., Chen H., Niu W. B., Fam D. W. H., Palaniappan A., Larisika M., Faulkner S. H., Nowak C., Nimmo M. A., Liedberg B., Tok A. I. Y., RSC Adv., 2015, 5(49), 39245

    CAS  Google Scholar 

  40. Erickson K., Erni R., Lee Z., Alem N., Gannett W., Zettl A., Adv. Mater., 2010, 22(40), 4467

    CAS  PubMed  Google Scholar 

  41. Gómez-Navarro C., Meyer J. C., Sundaram R. S., Chuvilin A., Kurasch S., Burghard M., Kern K., Kaiser U., Nano Lett., 2010, 10(4), 1144

    PubMed  Google Scholar 

  42. Youn H., Lee K., Her J., Jeon J., Mok J., So J., Shin S., Ban C., Sci. Rep. UK, 2019, 9(1), 7659

    Google Scholar 

  43. Wang L., Liu X. J., Zhang Q., Zhang C. Z., Liu Y., Tu K., Tu J., Biotechnol. Lett., 2012, 34(5), 869

    CAS  PubMed  Google Scholar 

  44. Zhang C. M., Wang L. W., Zhai T. L., Wang X. C., Dan Y., Turng L. S., J. Mech. Behav. Biomed., 2016, 53, 403

    CAS  Google Scholar 

  45. Tang X. M., Li X. T., Ma D. L., Lu L. H., Qu B. H., Talanta, 2018, 189, 599

    CAS  PubMed  Google Scholar 

  46. Liu Z. P., Tian C. S., Lu L. H., Su X. G., RSC Adv., 2016, 6(12), 10205

    CAS  Google Scholar 

  47. Yang X. Y., Zhang X. Y., Liu Z. F., Ma Y. F., Huang Y., Chen Y. S., J. Phys. Chem. C, 2008, 112(45), 17554

    CAS  Google Scholar 

  48. Li F., Huang Y., Yang Q., Zhong Z. T., Li D., Wang L. H., Song S. P., Fan C. H., Nanoscale, 2010, 2(6), 1021

    CAS  PubMed  Google Scholar 

  49. Zhang M., Yin B. C., Tan W., Ye B. C., Biosens. Bioelectron., 2011, 26(7), 3260

    CAS  PubMed  Google Scholar 

  50. He S. J., Song B., Li D., Zhu C. F., Qi W. P., Wen Y. Q., Wang L. H., Song S. P., Fang H. P., Fan C. H., Adv. Funct. Mater., 2010, 20(3), 453

    CAS  Google Scholar 

  51. Pang S., Labuza T. P., He L., Analyst, 2014, 139(8), 1895

    CAS  PubMed  Google Scholar 

  52. Zhang C., Wang L., Tu Z., Sun X., He Q., Lei Z., Xu C., Liu Y., Zhang X., Yang J., Liu X., Xu Y., Biosens. Bioelectron., 2014, 55, 216

    CAS  PubMed  Google Scholar 

  53. Li C., Zhang G. P., Wu S. Q., Zhang Q. C., Anal. Chim. Acta, 2018, 1020, 116

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Li or Xiaohui Xiong.

Additional information

Supported by the National Key R&D Program of China(No.2018YFC1602800), the Natural Science Foundation of Jiangsu Province, China(No.BK20161542) and the National Student’s Platform for Innovation and Entrepreneurship Training Program, China(No.201910291084Z).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, J., Li, S., Li, Y. et al. Fluorescent Aptamer-Polyethylene Glycol Functionalized Graphene Oxide Biosensor for Profenofos Detection in Food. Chem. Res. Chin. Univ. 36, 787–794 (2020). https://doi.org/10.1007/s40242-019-9257-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-019-9257-4

Keywords

Navigation