Skip to main content

Advertisement

Log in

Effects of surface modification of upconversion nanoparticles on cellular uptake and cytotoxicity

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Lanthanide-doped upconversion nanoparticles(UCNPs) are great promising to apply to biomedical imaging and therapy. We prepared NaYF4:Yb3+,Er3+ nanoparticles with different surface ligands, i.e., without any ligands(bare), coordinated with 2-aminoethyl dihydrogen phosphate(AEP), polyacrylic acid(PAA) or polyallylamine (PAAm), via a simple two-step ligand exchange of oleic acid capped NaYF4:Yb3+,Er3+ nanoparticles. Although the surface modification retained the crystal structure and transimission electron microscope(TEM) size distribution of the nanoparticles, and good dispersibility in aqueous solution and did not significantly change the upconversion luminescence, distinct differences were observed in the surface charge and hydrodynamic diameter. The cellular uptake and cytotoxicity of the nanoparticles were studied on two different cell lines, breast cancer MCF-7 and fibroblast 3T3. Confocal microscopy images demonstrate that PAAm-coordinated UCNPs can enhance the cellular uptake and endocytosis, whereas AEP- and PAA-coordinated UCNPs show a very low level of nonspecific adsorption. Biocompatibility studies based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay, however, indicate that PAAm-coordinated UCNPs are more toxic than the other two, and thus need further modifiaction(like PEG coordinating) to improve their biocompatibility. These results are important to the knowledge base required for the biomedical application of the UCNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Medintz I., Uyeda H., Goldman E., Mattoussi H., Nat. Mater., 2005, 4(6), 435

    Article  CAS  Google Scholar 

  2. Lu A. H., Salabas E. L., Schüth F., Angew. Chem. Int. Ed., 2007, 46(8), 1222

    Article  CAS  Google Scholar 

  3. Lee J. H., Huh Y. M., Jun Y. W., Seo J. W., Jang J. T., Song H. T., Kim S., Cho E. J., Yoon H. G., Suh J. S., Nat. Med., 2006, 13(1), 95

    Article  Google Scholar 

  4. Cho K., Wang X., Nie S., Shin D. M., Clin. Cancer Res., 2008, 14(4), 1310

    Article  CAS  Google Scholar 

  5. Shi J., Votruba A. R., Farokhzad O. C., Langer R., Nano Lett., 2010, 10(9), 3223

    Article  CAS  Google Scholar 

  6. Cheng L., Yang K., Li Y., Chen J., Wang C., Shao M., Lee S. T., Liu Z., Angew. Chem. Int. Ed., 2011, 50(33), 7523

    Article  Google Scholar 

  7. Park Y. I., Kim J. H., Lee K. T., Jeon K. S., Na H. B., Yu J. H., Kim H. M., Lee N., Choi S. H., Baik S. I., Adv. Mater., 2009, 21(44), 4467

    Article  CAS  Google Scholar 

  8. Qian H. S., Guo H. C., Ho P. C. L., Mahendran R., Zhang Y., Small, 2009, 5(20), 2285

    Article  CAS  Google Scholar 

  9. Wang C., Tao H., Cheng L., Liu Z., Biomaterials 2011, 32(26), 6145

    Article  CAS  Google Scholar 

  10. Jiang S., Zhang Y., Lim K. M., Sim E. K., Ye L., Nanotechnology, 2009, 20(15), 155101

    Article  Google Scholar 

  11. Jayakumar M. K. G., Idris N. M., Zhang Y., Proc. Natl. Acad. Sci. U. S. A., 2012, 109(28), 8483

    Article  CAS  Google Scholar 

  12. Zhang F., Braun G. B., Pallaoro A., Zhang Y., Shi Y., Cui D., Moskovits M., Zhao D., Stucky G. D., Nano Lett., 2011, 12(1), 61

    Article  CAS  Google Scholar 

  13. Hu L., Mao Z., Gao C., J. Mater. Chem., 2009, 19(20), 3108

    Article  CAS  Google Scholar 

  14. Sun Y., Feng W., Yang P. Y., Huang C. H., Li F. Y., Chem. Soc. Rev., 2015, 44, 1509

    Article  CAS  Google Scholar 

  15. Qian H. S., Zhang Y., Langmuir, 2008, 24(21), 12123

    Article  CAS  Google Scholar 

  16. Bogdan N., Vetrone F., Ozin G. A., Capobianco J. A., Nano Lett., 2011, 11(2), 835

    Article  CAS  Google Scholar 

  17. Bogdan N., Rodríguez E. M., Sanz-Rodríguez F., Iglesias de la Cruz M. C., Juarranz Á., Jaque D., Solé J. G., Capobianco J. A., Nanoscale, 2012, 4(12), 3647

    Article  CAS  Google Scholar 

  18. Dobrovolskaia M. A., Patri A. K., Zheng J., Clogston J. D., Ayub N., Aggarwal P., Neun B. W., Hall J. B., McNeil S. E., Nanomed Nanotechnol., 2009, 5(1), 106

    Article  CAS  Google Scholar 

  19. Pathak A., Aggarwal A., Kurupati R. K., Patnaik S., Swami A., Singh Y., Kumar P., Vyas S. P., Gupta K. C., Pharm. Res., 2007, 24(10), 1427

    Article  CAS  Google Scholar 

  20. Boussif O., Delair T., Brua C., Veron L., Pavirani A., Kolbe H. V., Bioconjugate Chem., 1999, 10(5), 877

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shixing Qiao.

Additional information

Supported by the Project of the Jilin Province Development and Reform Commission, China(No.2013C029-1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Qiao, X., Zhang, J. et al. Effects of surface modification of upconversion nanoparticles on cellular uptake and cytotoxicity. Chem. Res. Chin. Univ. 32, 474–479 (2016). https://doi.org/10.1007/s40242-016-6026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-6026-5

Keywords

Navigation