Skip to main content
Log in

Anode engineering of highly efficient polymer solar cells using treated ITO

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

ITO substrates were treated with organic solvent cleaning(OSC), SC1 treatment[V(NH4OH):V(H2O2): V(H2O)=1:1:5], O2 plasma and UV ozone, respectively. Combined investigations of atom force microscopy(AFM), water contact angle measurements, ultraviolet photoemission spectroscopy(UPS) and X-ray photoemission spectroscopy(XPS) demonstrated that UV ozone treatment could give rise to the smoothest surface, the most hydrophilic property and the highest work function(WF) of ITO due to the removal of hydrophobic C―O impurity from the ITO surface and the enrichments of more oxygen on the ITO surface. When PEDOT:PSS film[(poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate)] was deposited on the ITO substrates treated with UV ozone, it showed a lower root-mean- square roughness in AFM images, a higher transmission in UV-Vis transmission spectra and a higher WF in UPS spectra than the PEDOT:PSS films deposited on the ITO substrates treated by other three methods. As a result, the power conversion efficiency of polymer solar cells(PSCs) based on PTB7:PC71BM as an active layer and ITO treated by UV ozone as an anode can reach 8.48% because of the simultaneously improved short circuit current, open circuit voltage and fill factor compared to the PSCs with ITO treated with other three methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu G., Gao J., Hummelen J. C., Wudl F., Heeger A. J., Science, 1995, 270(5243), 1789

    Article  CAS  Google Scholar 

  2. Thompson B. C., Fréchet J. M. J., Angew. Chem. Int. Ed., 2008, 47(1), 58

    Article  CAS  Google Scholar 

  3. Qin R. P., Song G. L., Jiang Y. R., Bo Z. S., Chem. J. Chinese Universities, 2012, 33(4), 828

    CAS  Google Scholar 

  4. Li G., Zhu R., Yang Y., Nat. Photon., 2012, 6(3), 153

    Article  CAS  Google Scholar 

  5. Liu B., Xu F., Zhang, X. H., Yan D. D., Lu D., Chem. Res. Chinese Universities, 2015, 31(5), 809

    Article  Google Scholar 

  6. Qi Z. Q., Chen X. K., Fan C. Z., Chai W. P., J. Mater. Process. Tech., 2009, 209, 973

    Article  CAS  Google Scholar 

  7. Chen Z. X., Li W. C., Li R., Zhang Y. F., Xu G. Q., Cheng H. S., Langmuir, 2013, 29(45), 13836

    Article  CAS  Google Scholar 

  8. Qin G., Fan L., Watanabe A., J. Mater. Process. Tech., 2016, 227, 16

    Article  CAS  Google Scholar 

  9. Donley C., Dunphy D., Paine D., Carter C., Nebesny K., Lee P., Alloway D., Armstrong N. R., Langmuir, 2002, 18(2), 450

    Article  CAS  Google Scholar 

  10. Kugler T., Johansson A., Dalsegg I., Gelius U., Salaneck W. R., Synthetic Met., 1997, 91(1-3), 143

    Article  CAS  Google Scholar 

  11. Kim K., Ihm K., Kim B., ACTA Phys. Pol. A, 2015, 127(4), 1176

    Article  Google Scholar 

  12. Kim J. S., Cacialli F., Granström M., Friend R. H., Johansson N., Salaneck W. R., Daik R., Feast W. J., Synthetic Met., 1999, 101(1-3), 111

    Article  CAS  Google Scholar 

  13. Kim J. S., Granström M., Friend R. H., Johansson N., Salaneck W. R., Daik R., Feast W. J., Cacialli F., J. Appl. Phys., 1998, 84(12), 6859

    Article  CAS  Google Scholar 

  14. Sugiyama K., Ishii H., Ouchi Y., J. Appl. Phys., 2000, 87(1), 295

    Article  CAS  Google Scholar 

  15. Praveen T., Shiju K., Predeep P., Microelectron. Eng., 2015, 131, 8

    Article  CAS  Google Scholar 

  16. Milliron D. J., Hill I. G., Shen C., Kahn A., Schwartz J., J. Appl. Phys., 2000, 87(1), 572

    Article  CAS  Google Scholar 

  17. Lu D., Wu Y., Guo J., Lu G., Wang Y., Shen J., Mater. Sci. Eng. B, 2003, 97(2), 141

    Article  Google Scholar 

  18. So S. K., Choi W. K., Cheng C. H., Leung L. M., Kwong C. F., Appl. Phys. A, 1999, 68(4), 447

    Article  CAS  Google Scholar 

  19. Ke J. C., Wang Y. H., Chen K. L., Huang C. J., J. Colloid Interf. Sci., 2016, 465, 311

    Article  CAS  Google Scholar 

  20. Kim S. Y., Lee J. L., Kim K. B., Tak Y. H., J. Appl. Phys., 2004, 95(5), 2560

    Article  CAS  Google Scholar 

  21. Su Z. S., Wang L. D., Li Y. T., Zhao H. F., Chu B., Li W. L., Nanoscale Res. Lett., 2012, 7(2), 465

    Article  Google Scholar 

  22. Tang F. C., Chang J., Chou W. Y., Cheng H. L., Chen J. S., She H. S., Phys. Status Solidi A, 2012, 209(2), 369

    Article  CAS  Google Scholar 

  23. Wagenpfahl A., Rauh D., Binder M., Deibel C., Dyakonov V., Phys. Rev. B, 2010, 82(11), 115306

    Article  Google Scholar 

  24. Ouyang X. H., Peng R. X., Ai L., Zhang X. Y., Ge Z. Y., Nat. Photon., 2015, 9(8), 520

    Article  CAS  Google Scholar 

  25. Liu S. J., Zhang K., Lu J. M., Zhang J., Yip H. L., Huang F., Cao Y., J. Am. Chem. Soc., 2013, 135(41), 15326

    Article  CAS  Google Scholar 

  26. Duan C. H., Zhang K., Guan X., Zhong C. M., Xie H. M., Huang F., Chen J. W., Peng J. B., Cao Y., Chem. Sci., 2013, 4(3), 1298

    Article  CAS  Google Scholar 

  27. Kim J. K., Park I., Kim W. J., Wang D. H., Choi D. G., Choi Y. S., Park J. H., ChemSusChem, 2014, 7(7), 1957

    Article  CAS  Google Scholar 

  28. Zhou H., Zhang Y., Mai C. K., Collins S. D., Nguyen T. Q., Bazan G. C., Heeger A. J., Adv. Mater., 2014, 26(5), 780

    Article  CAS  Google Scholar 

  29. Wang F., Xu Q., Tan Z. A., Li L., Li S., Hou X., Sun G., Tu X., Hou J., Li Y., J. Mater. Chem. A, 2014, 2(5), 1318

    Article  CAS  Google Scholar 

  30. Xu Q., Wang F., Tan Z. A., Li L., Li S., Hou X., Sun G., Tu X., Hou J., Li Y., ACS Appl. Mater. Interfaces, 2013, 5(21), 10658

    Article  CAS  Google Scholar 

  31. Dang M. T., Lefebvre J., Wuest J. D., ACS Sustainable Chem. Eng., 2015, 3(12), 3373

    Article  CAS  Google Scholar 

  32. Dang M. T., Brunner P. L. M., Wuest J. D., ACS Sustainable Chem. Eng., 2014, 2(12), 2715

    Article  CAS  Google Scholar 

  33. Wang F. Z., Sun G., Li Cong, Liu J. Y., Hu S. Q., Zheng H., Tan Z. A., Li Y. F., ACS Appl. Mater. Interfaces, 2014, 6(12), 9458

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenghong Li.

Additional information

Supported by the National Basic Research Program of China(No.2014CB643505) and the National Natural Science Foundation of China(No.51273077).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Sun, Y., Yu, C. et al. Anode engineering of highly efficient polymer solar cells using treated ITO. Chem. Res. Chin. Univ. 32, 689–694 (2016). https://doi.org/10.1007/s40242-016-6176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-6176-5

Keywords

Navigation