Skip to main content
Log in

Hybrid hydrogels assembled from phenylalanine derivatives and agarose with enhanced mechanical strength

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

A roadblock for supramolecular hydrogels is their poor mechanical properties. Herein, to enhance the mechanical strength of supramolecular hydrogels, agarose(AG) was incorporated into the low molecular weight hydrogelator( G1). The results of scanning electron microscopy(SEM), circular dichroism(CD) and Fourier transform infrared spectroscopy(FTIR) prove that G1 gelators can self-assemble into cross-linked network together with AG. The mechanical properties of the gels are characterized by a rotary rheometer and the mechanical properties of the hybrid hydrogels(Hgel) can be significantly improved and may be further tuned by changing the ratio of the two components. For example, the elastic modulus of Hgel II[m(G1):m(AG)=7:3] is about 2 times higher than that of G1 hydrogel. The results demonstrate that the mechanical property of hybrid supramolecular hydrogels can be adjusted through the formation of a cross-linked network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feng C. L., Dou X. Q., Zhang D., Schönherr H., Macromol. Rapid Commun., 2012, 33(18), 1535

    Article  CAS  Google Scholar 

  2. Zhou J., Du X. W., Gao Y., Shi J. F., Xu B., J. Am. Chem. Soc., 2014, 136(8), 2970

    Article  CAS  Google Scholar 

  3. Griffith A., Bandy T. J., Light M., Stulz E., Chem. Commun., 2013, 49(7), 731

    Article  CAS  Google Scholar 

  4. Guo K., Zhang H., Sun J. C., Yuan S. L., Liu C. B., Chem. J. Chinese Univisities, 2015, 36(11), 2171

    CAS  Google Scholar 

  5. Liang G. L., Yang Z. M., Zhang R. J., Li L. H., Fan Y. J., Kuang Y., Gao Y., Wang T., Lu W. W., Xu B., Langmuir, 2009, 25(15), 8419

    Article  CAS  Google Scholar 

  6. Li J., Li X., Ni X. P., Wang X., Li H. Z., Leong K. W., Biomaterials, 2006, 27(22), 4132

    Article  CAS  Google Scholar 

  7. Zhou Y., Cui H. J., Shu C., Ling Y., Wang R., Li H. M., Chen Y. D., Lu T., Zhong W. Y., Chem. Commun., 2015, 51(83), 15294

    Article  CAS  Google Scholar 

  8. Shao Y., Fu J. P., Adv. Mater., 2014, 26(10), 1494

    Article  CAS  Google Scholar 

  9. Suga T., Osada S., Narita T., Oishi Y., Kodama H., Mater. Sci. Eng., C, 2015, 47, 345

    Article  CAS  Google Scholar 

  10. Cheng C., Tang M. C., Wu C. S., Simon T., Ko F. H., ACS Appl. Mater. Interfaces, 2015, 7(34), 19306

    Article  CAS  Google Scholar 

  11. Steed J. W., Chem. Commun., 2011, 47(5), 1379

    Article  CAS  Google Scholar 

  12. Das D., Dasgupta A., Roy S., Mitra R. N., Debnath S., Das P. K., Chem. Eur. J., 2006, 12(19), 5068

    Article  CAS  Google Scholar 

  13. Appel E. A., Barrio J. D., Loh X. J., Scherman O. A., Chem. Soc. Rev., 2012, 41(18), 6195

    Article  CAS  Google Scholar 

  14. Lee K. Y., Mooney D. J., Chem. Rev., 2001, 101(7), 1869

    Article  CAS  Google Scholar 

  15. Cui L., Jia J. F., Xiong Z. H., Zhang C. J., Ye Z. T., Zhu P., Acta Polym. Sin., 2014, 43(3), 361

    Google Scholar 

  16. Tse J. R., Engler A. J., PLoS One, 2011, 6(1), 121

    Article  Google Scholar 

  17. Engler A. J., Sen S., Sweeney H. L., Discher D. E., Cell, 2006, 126(1), 677

    Article  CAS  Google Scholar 

  18. Liu S. L., Zhou Y., Chen F. H., Zhu S. J., Su F., Li S. M., Acta Chim. Sinica, 2015, 73(1), 47

    Article  CAS  Google Scholar 

  19. Bhattacharya S., Srivastava A., Pal A., Angew. Chem., 2006, 118(18), 3000

    Article  Google Scholar 

  20. Srinivasan S., Babu S. S., Praveen V., Ajayaghosh A., Angew. Chem. Int. Ed., 2008, 47(31), 5746

    Article  CAS  Google Scholar 

  21. Chen L., Revel S., Morris K., Spiller D. G., Serpell L. C., Adams D. J., Chem. Commun., 2010, 46(36), 6738

    Article  CAS  Google Scholar 

  22. Cornwell D. J., Smith D. K., Mater. Horiz., 2015, 2(3), 279

    Article  CAS  Google Scholar 

  23. Cornwell D. J., Okesola B. O., Smith D. K., Soft Matter, 2013, 9(36), 8730

    Article  CAS  Google Scholar 

  24. Way A. E., Korpusik A. B., Dorsey T. B., Buerkle L. E., Recum H. V. A., Rowan S. J., Macromolecules, 2014, 47(5), 1810

    Article  CAS  Google Scholar 

  25. Huang R. L., Qi W., Feng L. B., Su R. X., He Z. M., Soft Matter, 2011, 7(13), 6222

    Article  CAS  Google Scholar 

  26. Wang J. Y., Wang H. M., Song Z. J., Kong D. L., Chen X. M., Yang Z. M., Colloids Surf., B, 2010, 80(2), 155

    Article  CAS  Google Scholar 

  27. Wang J. Y., Wang Z. H., Gao J., Wang L., Yang Z. Y., Kong D. L., Yang Z. M., J. Mater. Chem., 2009, 19(42), 7892

    Article  CAS  Google Scholar 

  28. Li P., Dou X. Q., Feng C. L., Zhang D., Soft Matter, 2013, 9(14), 3750

    Article  CAS  Google Scholar 

  29. Kuang H. H., He H. Y., Zhang Z. Y., Qi Y. X., Xie Z. G., Jing X. B., Huang Y. B., J. Mater. Chem. B, 2014, 2(2), 659

    Article  CAS  Google Scholar 

  30. Lopes C. M. A., Felisberti M. I., Biomaterials, 2003, 24(7), 1279

    Article  CAS  Google Scholar 

  31. Santin M., Huang S. J., Iannace S., Ambrosio L., Nicolais L., Peluso G., Biomaterials, 1996, 17(15), 1459

    Article  CAS  Google Scholar 

  32. Sharma K., Kumar V., Kaith B. S., Som S., Kumar V., Pandey A., Kalia S., Swart H. C., Ind. Eng. Chem. Res., 2015, 54(7), 1982

    Article  CAS  Google Scholar 

  33. Liu X. J., Zhang Y. M., Li X. S., Chinese J. Polym. Sci., 2015, 33(12), 1741

    Article  CAS  Google Scholar 

  34. Nuhn H., Klok H. A., Biomacromolecules, 2008, 9(10), 2755

    Article  CAS  Google Scholar 

  35. Ma M. L., Kuang Y., Gao Y., Zhang Y., Gao P., Xu B., J. Am. Chem. Soc., 2010, 132(8), 2719

    Article  CAS  Google Scholar 

  36. Dou X. Q., Li P., Zhang D., Feng C. L., Soft Matter, 2012, 8(11), 3231

    Article  CAS  Google Scholar 

  37. Meena R., Siddhanta A. K., Prasad K., Ramavat B. K., Eswaran K., Thiruppathi S., Ganesan M., Mantri V. A., Rao P. V. S., Carbohydr. Polym., 2007, 69(1), 179

    Article  CAS  Google Scholar 

  38. Gasperini L., Mano J. F., Reis R. L., J. R. Soc. Interface, 2014, 11, 0817

    Article  Google Scholar 

  39. Zhao W., Jin X., Cong Y., Liu Y. J., Fu J., J. Chem. Technol. Biotechnol., 2013, 88(3), 327

    Article  CAS  Google Scholar 

  40. Varoni E., Tschon M., Palazzo B., Nitti P., Martini L., Rimondini L., Connect Tissue Res., 2012, 53(6), 548

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanliang Feng.

Additional information

Supported by the National Natural Science Foundation of China(Nos.51273111, 51173105, 51573092) and the National Basic Research Program of China(No.2012CB933803).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Wang, Y. & Feng, C. Hybrid hydrogels assembled from phenylalanine derivatives and agarose with enhanced mechanical strength. Chem. Res. Chin. Univ. 32, 872–876 (2016). https://doi.org/10.1007/s40242-016-5474-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-5474-2

Keywords

Navigation