Skip to main content

A General Method to Prepare Peptide-Based Supramolecular Hydrogels

  • Protocol
  • First Online:
Peptide Self-Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1777))

Abstract

As a type of versatile soft materials, supramolecular hydrogels made of peptides have received increasing research attention in past decade and have found useful applications in many areas. Meanwhile, numerous methods have been reported to initiate hydrogelation via noncovalent intermolecular interactions. Generally, most hydrogelation starts from a homogeneous solution and reaches a balance of water hydration and hydrophobic interactions, thereby resulting in hydrogelation. Here, we describe a general method to prepare supramolecular hydrogels of small peptides, and describe two examples to demonstrate hydrogel preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Du X, Zhou J, Shi J, Xu B (2015) Supramolecular Hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev 115:13165–13307

    Article  CAS  Google Scholar 

  2. Zhou J, Xu B (2015) Enzyme-instructed self-assembly: a multistep process for potential cancer therapy. Bioconjug Chem 26:987–999

    Article  CAS  Google Scholar 

  3. Altunbas A, Pochan DJ (2012) Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering. In: Deming T (ed) Peptide-based materials, pp 135–167

    Google Scholar 

  4. Ryan DM, Nilsson BL (2012) Self-assembled amino acids and dipeptides as noncovalent hydrogels for tissue engineering. Polym Chem 3:18–33

    Article  CAS  Google Scholar 

  5. Jung H, Park JS, Yeom J, Selvapalam N, Park KM, Oh K et al (2014) 3d tissue engineered supramolecular hydrogels for controlled chondrogenesis of human mesenchymal stem cells. Biomacromolecules 15:707–714

    Article  CAS  Google Scholar 

  6. He B, Yuan X, Wu J, Bai Y, Jiang DM (2015) Self-assembling peptide nanofiber scaffolds for bone tissue engineering. Sci Adv Mater 7:1221–1232

    Article  CAS  Google Scholar 

  7. Latxague L, Ramin MA, Appavoo A, Berto P, Maisani M, Ehret C et al (2015) Control of stem-cell behavior by fine tuning the supramolecular assemblies of low-molecular-weight gelators. Angew Chem Int Ed 54:4517–4521

    Article  CAS  Google Scholar 

  8. Grinstaff MW (2007) Designing hydrogel adhesives for corneal wound repair. Biomaterials 28:5205–5214

    Article  CAS  Google Scholar 

  9. Yang, Z. M., Liang, G. L., Ma, M. L., Abbah, A. S., Lu, W. W. and Xu, B. (2007) D-glucosamine-based supramolecular hydrogels to improve wound healing. Chem Commun 843–845

    Google Scholar 

  10. Pinho E, Grootveld M, Soares G, Henriques M (2014) Cyclodextrin-based hydrogels toward improved wound dressings. Crit Rev Biotechnol 34:328–337

    Article  CAS  Google Scholar 

  11. Schnepp ZAC, Gonzalez-McQuire R, Mann S (2006) Hybrid biocomposites based on calcium phosphate mineralization of self-assembled supramolecular hydrogels. Adv Mater 18:1869–1872

    Article  CAS  Google Scholar 

  12. Shi N, Yin G, Han M, Xu Z (2008) Anions bonded on the supramolecular hydrogel surface as the growth center of biominerals. Colloids Surf B Biointerfaces 66:84–89

    Article  CAS  Google Scholar 

  13. Sutton S, Campbell NL, Cooper AI, Kirkland M, Frith WJ, Adams DJ (2009) Controlled release from modified amino acid hydrogels governed by molecular size or network dynamics. Langmuir 25:10285–10291

    Article  CAS  Google Scholar 

  14. Wang J, Wang Z, Gao J, Wang L, Yang Z, Kong D et al (2009) Incorporation of supramolecular hydrogels into agarose hydrogels-a potential drug delivery carrier. J Mater Chem 19:7892–7896

    Article  CAS  Google Scholar 

  15. Mandal D, Mandal SK, Ghosh M, Das PK (2015) Phenylboronic acid appended pyrene-based low-molecular-weight injectable hydrogel: glucose-stimulated insulin release. Chem Eur J 21:12042–12052

    Article  CAS  Google Scholar 

  16. Saboktakin MR, Tabatabaei RM (2015) Supramolecular hydrogels as drug delivery systems. Int J Biol Macromol 75:426–436

    Article  CAS  Google Scholar 

  17. Kiyonaka S, Sada K, Yoshimura I, Shinkai S, Kato N, Hamachi I (2004) Semi-wet peptide/protein Array using supramolecular hydrogel. Nat Mater 3:58–64

    Article  CAS  Google Scholar 

  18. Ikeda M, Ochi R, Hamachi I (2010) Supramolecular hydrogel-based protein and chemosensor array. Lab Chip 10:3325–3334

    Article  CAS  Google Scholar 

  19. Yoshii T, Onogi S, Shigemitsu H, Hamachi I (2015) Chemically reactive supramolecular hydrogel coupled with a signal amplification system for enhanced analyte sensitivity. J Am Chem Soc 137:3360–3365

    Article  CAS  Google Scholar 

  20. Ikeda M, Ochi R, Wada A, Hamachi I (2010) Supramolecular hydrogel capsule showing prostate specific antigen-responsive function for sensing and targeting prostate cancer cells. Chem Sci 1:491–498

    Article  CAS  Google Scholar 

  21. Ren C, Zhang J, Chen M, Yang Z (2014) Self-assembling small molecules for the detection of important analytes. Chem Soc Rev 43:7257–7266

    Article  CAS  Google Scholar 

  22. Huang P, Gao Y, Lin J, Hu H, Liao H-S, Yan X et al (2015) Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics. ACS Nano 9:9517–9527

    Article  CAS  Google Scholar 

  23. Wang QG, Yang ZM, Zhang XQ, Xiao XD, Chang CK, Xu B (2007) A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angew Chem Int Ed 46:4285–4289

    Article  CAS  Google Scholar 

  24. Duncan KL, Ulijn RV (2015) Short peptides in minimalistic biocatalyst design. Biocatal Biotransformation 1:67–81

    Google Scholar 

  25. Su H, Koo JM, Cui H (2015) One-component nanomedicine. J Control Release 219:383–395

    Article  CAS  Google Scholar 

  26. Tanaka A, Fukuoka Y, Morimoto Y, Honjo T, Koda D, Goto M et al (2015) Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator. J Am Chem Soc 137:770–775

    Article  CAS  Google Scholar 

  27. Roy S, Maiti DK, Panigrahi S, Basak D, Banerjee A (2012) A new hydrogel from an amino acid-based perylene bisimide and its semiconducting, photo-switching behaviour. RSC Adv 2:11053–11060

    Article  CAS  Google Scholar 

  28. Kuang Y, Yuan D, Zhang Y, Kao A, Du X, Xu B (2013) Interactions between cellular proteins and morphologically different nanoscale aggregates of small molecules. RSC Adv 3:7704–7707

    Article  CAS  Google Scholar 

  29. Bastings MMC, Koudstaal S, Kieltyka RE, Nakano Y, Pape ACH, Feyen DAM et al (2014) A fast Ph-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium. Adv Healthcare Mater 3:70–78

    Article  CAS  Google Scholar 

  30. Qiao Y, Lin YY, Yang ZY, Chen HF, Zhang SF, Yan Y et al (2010) Unique temperature-dependent supramolecular self-assembly: from hierarchical 1d nanostructures to super hydrogel. J Phys Chem B 114:11725–11730

    Article  CAS  Google Scholar 

  31. Rao KV, Jayaramulu K, Maji TK, George SJ (2010) Supramolecular hydrogels and high-aspect-ratio nanofibers through charge-transfer-induced alternate coassembly. Angew Chem Int Ed 49:4218–4222

    Article  CAS  Google Scholar 

  32. Bhattacharjee S, Bhattacharya S (2015) Charge transfer induces formation of stimuli-responsive, chiral, cohesive vesicles-on-a-string that eventually turn into a hydrogel. Chem Asian J 10:572–580

    Article  CAS  Google Scholar 

  33. Zhang Y, Gu H, Yang Z, Xu B (2003) Supramolecular hydrogels respond to ligand−receptor interaction. J Am Chem Soc 125:13680–13681

    Article  CAS  Google Scholar 

  34. Cao W, Zhang XL, Miao XM, Yang ZM, Xu HP (2013) Gamma-ray-responsive supramolecular hydrogel based on a diselenide-containing polymer and a peptide. Angew Chem Int Ed 52:6233–6237

    Article  CAS  Google Scholar 

  35. Kuang Y, Gao Y, Shi J, Li J, Xu B (2014) The first supramolecular peptidic hydrogelator containing taurine. Chem Commun 50:2772–2774

    Article  CAS  Google Scholar 

  36. Pappas CG, Mutasa T, Frederix P, Fleming S, Bai S, Debnath S et al (2015) Transient supramolecular reconfiguration of peptide nanostructures using ultrasound. Mater Horiz 2:198–202

    Article  CAS  Google Scholar 

  37. Toledano S, Williams RJ, Jayawarna V, Ulijn RV (2006) Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J Am Chem Soc 128:1070–1071

    Article  CAS  Google Scholar 

  38. Yang Z, Liang G, Wang L, Xu B (2006) Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. J Am Chem Soc 128:3038–3043

    Article  CAS  Google Scholar 

  39. Li J, Gao Y, Kuang Y, Shi J, Du X, Zhou J et al (2013) Dephosphorylation of D-peptide derivatives to form biofunctional, supramolecular nanofibers/hydrogels and their potential applications for intracellular imaging and intratumoral chemotherapy. J Am Chem Soc 135:9907–9914

    Article  CAS  Google Scholar 

  40. Kuang Y, Shi J, Li J, Yuan D, Alberti KA, Xu Q et al (2014) Pericellular hydrogel/nanonets inhibit cancer cells. Angew Chem Int Ed 53:8104–8107

    Article  CAS  Google Scholar 

  41. Shi J, Du X, Yuan D, Zhou J, Zhou N, Huang Y et al (2014) D-amino acids modulate the cellular response of enzymatic-instructed supramolecular nanofibers of small peptides. Biomacromolecules 15:3559–3568

    Article  CAS  Google Scholar 

  42. Yuan D, Zhou R, Shi J, Du X, Li X, Xu B (2014) Enzyme-instructed self-assembly of hydrogelators consisting of nucleobases, amino acids, and saccharide. RSC Adv 4:26487–26490

    Article  CAS  Google Scholar 

  43. Li J, Kuang Y, Shi J, Zhou J, Medina JE, Zhou R et al (2015) Enzyme-instructed intracellular molecular self-assembly to boost activity of cisplatin against drug-resistant ovarian cancer cells. Angew Chem Int Ed 54:13307–13311

    Article  CAS  Google Scholar 

  44. Wu D, Du X, Shi J, Zhou J, Zhou N, Xu B (2015) The first Cd73-instructed supramolecular hydrogel. J Colloid Interface Sci 447:269–272

    Article  CAS  Google Scholar 

  45. Zhou J, Du XW, Li J, Yamagata N, Xu B (2015) Taurine boosts cellular uptake of small D-peptides for enzyme-instructed intracellular molecular self-assembly. J Am Chem Soc 137:10040–10043

    Article  CAS  Google Scholar 

  46. Shi J, Du X, Huang Y, Zhou J, Yuan D, Wu D et al (2015) Ligand–receptor interaction catalyzes the aggregation of small molecules to induce cell necroptosis. J Am Chem Soc 137:26–29

    Article  CAS  Google Scholar 

  47. Shi JF, Du XW, Yuan D, Haburcak R, Zhou N, Xu B (2015) Supramolecular detoxification of neurotoxic nanofibrils of small molecules via morphological switch. Bioconjug Chem 26:1879–1883

    Article  CAS  Google Scholar 

  48. Thompson MS, Tsurkan MV, Chwalek K, Bornhauser M, Schlierf M, Werner C et al (2015) Self-assembling hydrogels crosslinked solely by receptor-ligand interactions: Tunability, rationalization of physical properties, and 3d cell culture. Chem Eur J 21:3178–3182

    Article  CAS  Google Scholar 

  49. Sreenivasachary N, Lehn JM (2005) Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation. Proc Natl Acad Sci U S A 102:5938–5943

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grant from NIH (CA142746) and Keck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yuan, D., Shi, J., Zhou, N., Xu, B. (2018). A General Method to Prepare Peptide-Based Supramolecular Hydrogels. In: Nilsson, B., Doran, T. (eds) Peptide Self-Assembly. Methods in Molecular Biology, vol 1777. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7811-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7811-3_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7809-0

  • Online ISBN: 978-1-4939-7811-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics