Skip to main content
Log in

Advanced biological sequential treatment of mature landfill leachate using aerobic activated sludge SBR and fungal bioreactor

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

This study utilized Penicillium spp. to treat mature landfill leachate (MLL) in a continuous bioreactor and batch experimental tests under non-sterile conditions. MLL characteristics such as chemical oxygen demand (COD), soluble COD (sCOD), total carbon (TC), total organic carbon (TOC), and color removal efficiency were determined. The lignocellulosic enzymatic activity of laccase (Lac), lignin-peroxidase (LiP), and manganese-peroxidase (MnP) was also determined. The batch experimental test was carried out with raw and pretreated MLL containing the initial NH4+–N concentrations of 0, 105, 352, and 914 mg/L. A maximum COD reduction of 41% and maximum enzymatic activity of 193, 37, and 25 U/L for Lac, LiP and MnP was recorded for the MLL containing 352 mg/L NH4+–N. The continuous bioreactor exhibited maximum values of 52, 54, 60, 58, and 75 percentage of COD, sCOD, TC, TOC, and color removal efficiency with MLL containing 352 mg/L NH4+–N that was pretreated at HRT 120 h, while the maximum detected lignocellulosic enzymatic activities were 149, 27, and 16 U/L for Lac, LiP, and MnP, respectively. A total of 64% COD reduction was achieved from the raw MLL considering 12% COD and 100% NH4+–N reduction in the aerobic activated sludge sequencing batch reactor pretreatment process. The steady and higher removal efficiency of the bioreactor over the entire study period is promising for further exploration to enhance removal of refractory contaminants from the MLL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ANOVA:

Analysis of variance

BOD:

Biochemical oxygen demand

BRRMF:

Brady road resource management facility

Ca:

Calcium

COD:

Chemical oxygen demand

CT:

Control

F:

Fungus

Fe:

Iron

h:

Hour

HRT:

Hydraulic retention time

K:

Potassium

L:

Liter

Lac:

Laccase

LiP:

Ligni-peroxidase

mg:

Milligram

Mg:

Magnesium

MLL:

Mature landfill leachate

MLTSS:

Mix liquor total suspended solids

MLVSS:

Mix liquor volatile suspended solid

mM:

Millimolar

Mn:

Manganese

MnP:

Manganese-peroxidase

N:

Nitrogen

Na:

Sodium

nm:

Nanometer

P:

Phosphorus

pCOD:

Particulate chemical oxygen demand

PUF:

Polyethylene foam

rpm:

Revolution per minute

SBR:

Sequencing batch reactor

sCOD:

Soluble chemical oxygen demand

SVI:

Sludge volume index

TC:

Total carbon

TN:

Total nitrogen

TOC:

Total organic carbon

U/L:

Unit per liter

v/v:

Volume / volume

VSS:

Volatile suspended solids

WWTP:

Wastewater treatment plant

References

  1. Berenjkar P, Islam M, Yuan Q. Co-treatment of sewage sludge and mature landfill leachate by anaerobic digestion. Int J Environ Sci Technol. 2018;1:2465–74. https://doi.org/10.1007/s13762-018-1889-2.

    Article  CAS  Google Scholar 

  2. Foo KY, Hameed BH. An overview of landfill leachate treatment via activated carbon adsorption process. J Hazard Mater. 2009;171:54–60. https://doi.org/10.1016/j.jhazmat.2009.06.038.

    Article  CAS  Google Scholar 

  3. Mandal P, Dubey BK, Gupta AK. Review on landfill leachate treatment by electrochemical oxidation: drawbacks, challenges and future scope. Waste Manag. 2017;69:250–73. https://doi.org/10.1016/J.WASMAN.2017.08.034.

    Article  CAS  Google Scholar 

  4. Peyravi M, Jahanshahi M, Alimoradi M, Ganjian E. Old landfill leachate treatment through multistage process: membrane adsorption bioreactor and nanofitration. Bioprocess Biosyst Eng. 2016;39:1803–16. https://doi.org/10.1007/s00449-016-1655-0.

    Article  CAS  Google Scholar 

  5. Saleem M, Spagni A, Alibardi L, Bertucco A, Lavagnolo MC. Assessment of dynamic membrane filtration for biological treatment of old landfill leachate. J Environ Manag. 2018;213:27–35. https://doi.org/10.1016/j.jenvman.2018.02.057.

    Article  CAS  Google Scholar 

  6. Ren Y. Evaluation of landfill leachate treatment using aerobic granular sludge and activated sludge processes: University of Manitoba; 2017.

  7. Torretta V, Ferronato N, Katsoyiannis I, Tolkou A, Airoldi M. Novel and conventional technologies for landfill leachates treatment: a review. Sustainability. 2016;9:9. https://doi.org/10.3390/su9010009.

    Article  CAS  Google Scholar 

  8. Ghosh P, Swati T. Enhanced removal of COD and color from landfill leachate in a sequential bioreactor. Bioresour Technol. 2014;170:10–9. https://doi.org/10.1016/j.biortech.2014.07.079.

    Article  CAS  Google Scholar 

  9. Islam M, Yuan Q. Emerging concern of micropollutants: recommended inclusion of antibiotics monitoring in the environmental effects monitoring program for municipal wastewater effluents. Int J Environ Sci Dev. 2019;10:399–403. https://doi.org/10.18178/ijesd.2019.10.11.1206.

    Article  Google Scholar 

  10. Sardrood BP, Goltapeh EM, Varma A. An introduction to bioremediation. In: An introduction to bioremediation. Berlin, Heidelberg: Springer; 2013. p. 3–27. https://doi.org/10.1007/978-3-642-33811-3_1.

    Chapter  Google Scholar 

  11. Ochoa FG, Gomez E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv. 2008;27:153–76. https://doi.org/10.1016/j.biotechadv.2008.10.006.

    Article  CAS  Google Scholar 

  12. Sodaneath H, Lee J-I, Yang S-O, Jung H, Ryu HW, Cho K-S. Decolorization of textile dyes in an air-lift bioreactor inoculated with Bjerkandera adusta OBR105. J. Environ. Sci. Heal. Part A. 2017;52:1099–111. https://doi.org/10.1080/10934529.2017.1340753.

    Article  CAS  Google Scholar 

  13. Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv. 2004;22:189–259. https://doi.org/10.1016/J.BIOTECHADV.2003.09.005.

    Article  CAS  Google Scholar 

  14. Tang Y-J, Zhang W, Liu R-S, Zhu L-W, Zhong J-J. Scale-up study on the fed-batch fermentation of Ganoderma lucidum for the hyperproduction of ganoderic acid and Ganoderma polysaccharides. Process Biochem. 2011;46:404–8. https://doi.org/10.1016/J.PROCBIO.2010.08.013.

    Article  CAS  Google Scholar 

  15. Nair RB, Lennartsson PR, Taherzadeh MJ. Mycelial pellet formation by edible ascomycete filamentous fungi, Neurospora intermedia. AMB Express. 2016;6:31. https://doi.org/10.1186/s13568-016-0203-2.

    Article  CAS  Google Scholar 

  16. Kalčíková G, Babič J, Pavko A, Gotvajn AŽ. Fungal and enzymatic treatment of mature municipal landfill leachate. Waste Manag. 2014;34:798–803. https://doi.org/10.1016/j.wasman.2013.12.017.

    Article  CAS  Google Scholar 

  17. Saetang J, Babel S. Effect of leachate loading rate and incubation period on the treatment efficiency by T. versicolor immobilized on foam cubes. Int J Environ Sci Technol. 2009;6:457–66. https://doi.org/10.1007/BF03326085.

    Article  CAS  Google Scholar 

  18. Bardi A, Yuan Q, Siracusa G, Chicca I, Islam M, Spennati F, et al. Effect of cellulose as co-substrate on old landfill leachate treatment using white-rot fungi. Bioresour Technol. 2017;241:1067–76. https://doi.org/10.1016/j.biortech.2017.06.046.

    Article  CAS  Google Scholar 

  19. Islam M, Wai A, Hausner G, Yuan Q. Effect of lignocellulosic enzymes on the treatment of mature landfill leachate. J Environ Manag. 2019;233:400–9. https://doi.org/10.1016/j.jenvman.2018.12.045.

    Article  CAS  Google Scholar 

  20. Chen SH, Yien Ting AS. Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample. Int Biodeterior Biodegradation. 2015;103:1–7. https://doi.org/10.1016/j.ibiod.2015.04.004.

    Article  CAS  Google Scholar 

  21. Govarthanan M, Fuzisawa S, Hosogai T, Chang Y-C. Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity. RSC Adv. 2017;7:20716–23. https://doi.org/10.1039/C6RA28687A.

    Article  CAS  Google Scholar 

  22. Li G, Chen J, Yan W, Sang N. A comparison of the toxicity of landfill leachate exposure at the seed soaking and germination stages on Zea mays L. (maize). J Environ Sci. 2017a;55:206–13. https://doi.org/10.1016/j.jes.2016.06.031.

    Article  Google Scholar 

  23. Svobodová K, Novotný Č. Bioreactors based on immobilized fungi: bioremediation under non-sterile conditions. Appl Microbiol Biotechnol. 2018;102:39–46. https://doi.org/10.1007/s00253-017-8575-z.

    Article  CAS  Google Scholar 

  24. M.N, Chavan, N.D, Dandi, M. V, Kulkarni, A.B, Chaudhari, 2013. Biotreatment of melanoidin-containing distillery spent wash effluent by free and immobilized Aspergillus oryzae MTCC 7691. Water, air, soil Pollut. 224, 1755. https://doi.org/10.1007/s11270-013-1755-2.

  25. Ellouze M, Aloui F, Sayadi S. Effect of high ammonia concentrations on fungal treatment of Tunisian landfill leachates. Desalination. 2009;246:468–77. https://doi.org/10.1016/j.desal.2008.03.068.

    Article  CAS  Google Scholar 

  26. Koshy L, Paris E, Ling S, Jones T, BéruBé K. Bioreactivity of leachate from municipal solid waste landfills - assessment of toxicity. Sci Total Environ. 2007;384:171–81. https://doi.org/10.1016/j.scitotenv.2007.06.017.

    Article  CAS  Google Scholar 

  27. Li X, Li F, Lai C, Huang J, Pang Y, Luo K, et al. Activities of laccase produced by a strains Penicillium simplicissimum induced by chemical agentia and UV radiation. J Cent South Univ. 2017b;24:1953–8. https://doi.org/10.1007/s11771-017-3603-9.

    Article  CAS  Google Scholar 

  28. Ahmed FN, Lan CQ. Treatment of landfill leachate using membrane bioreactors: a review. Desalination. 2012;287:41–54. https://doi.org/10.1016/j.desal.2011.12.012.

    Article  CAS  Google Scholar 

  29. Zhang J, Yang T, Wang H, Yang K, Fang C, Lv B, et al. Study on treating old landfill leachate by ultrasound–Fenton oxidation combined with MAP chemical precipitation. Chem Speciat Bioavailab. 2015;27:175–82. https://doi.org/10.1080/09542299.2015.1118360.

    Article  CAS  Google Scholar 

  30. APHA. Standard methods for the examination of water and wastewater. 18th ed. DC, USA.: American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), Washington; 1998.

    Google Scholar 

  31. Bourbonnais R, Paice MG. Oxidation of non-phenolic substrates. FEBS Lett. 1990;267:99–102. https://doi.org/10.1016/0014-5793(90)80298-W.

    Article  CAS  Google Scholar 

  32. Vyas BRM, Volc J, Šašek V. Ligninolytic enzymes of selected white rot fungi cultivated on wheat straw. Folia Microbiologia (Praha). 1994;39:235–40. https://doi.org/10.1007/BF02814655.

    Article  CAS  Google Scholar 

  33. Tien M, Kirk TK. Lignin-degrading enzyme from Phanerochaete chrysosporium : purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci. 1984;81:2280–4. https://doi.org/10.1073/pnas.81.8.2280.

    Article  CAS  Google Scholar 

  34. Manitoba Water Stewardship. Manitoba water quality standards, objectives, and guidelines. MB, Canada: Winnipeg; 2011.

    Google Scholar 

  35. Ürek RÖ, Pazarlioǧlu NK. Production and stimulation of manganese peroxidase by immobilized Phanerochaete chrysosporium. Process Biochem. 2005;40:83–7. https://doi.org/10.1016/j.procbio.2003.11.040.

    Article  CAS  Google Scholar 

  36. Singh D, Chen S. The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl Microbiol Biotechnol. 2008;81:399–417. https://doi.org/10.1007/s00253-008-1706-9.

    Article  CAS  Google Scholar 

  37. Tchobanoglous G, Burton FL, Stensel HD. Wastewater engineering: treatment and reuse. 4th ed. Boston, MA, USA: McGraw-Hill; 2013.

    Google Scholar 

  38. Xu Z-Y, Zeng G-M, Yang Z-H, Xiao Y, Cao M, Sun H-S, et al. Biological treatment of landfill leachate with the integration of partial nitrification, anaerobic ammonium oxidation and heterotrophic denitrification. Bioresour Technol. 2010;101:79–86. https://doi.org/10.1016/j.biortech.2009.07.082.

    Article  CAS  Google Scholar 

  39. Wang Y, Pelkonen M, Kaila J. Cost-saving biological nitrogen removal from strong ammonia landfill leachate. Waste Manag Res. 2011;29:797–806. https://doi.org/10.1177/0734242X10394911.

    Article  CAS  Google Scholar 

  40. Marañón E, Castrillón L, Fernández-Nava Y, Fernández-Méndez A, Fernández-Sánchez A. Colour, turbidity and COD removal from old landfill leachate by coagulation-flocculation treatment. Waste Manag Res. 2010;28:731–7. https://doi.org/10.1177/0734242X09352504.

    Article  CAS  Google Scholar 

  41. Müller GT, Giacobbo A, dos Santos Chiaramonte EA, Rodrigues MAS, Meneguzzi A, Bernardes AM. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process. Waste Manag. 2015;36:177–83. https://doi.org/10.1016/j.wasman.2014.10.024.

    Article  CAS  Google Scholar 

  42. Kaushik G, Gopal M, Thakur IS. Evaluation of performance and community dynamics of microorganisms during treatment of distillery spent wash in a three stage bioreactor. Bioresour Technol. 2010;101:4296–305. https://doi.org/10.1016/j.biortech.2010.01.046.

    Article  CAS  Google Scholar 

  43. Lu X-M, Ma L-H, Wang Z-H, Huang M-S. Application of polymerase chain reaction–denaturing gradient gel electrophoresis to resolve taxonomic diversity in white rot fungus reactors. Environ Eng Sci. 2010;27:493–503. https://doi.org/10.1089/ees.2010.0007.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the input of Dr. Munz and Dr. Spennati from University of Florence, Dr. Bardi from University of Pisz to develop the idea of fungal bioreactor.

Funding

The financial support was appropriated to the Graduate Enhancement of Tri-Council Stipends (GETS) and Create-H2O programs, University of Manitoba for this research from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Contributions

Mr. Mofizul Islam performed the overall entire experimental study including experimental design, reactors operation, samples collection and analysis, data interpretation, and manuscript writing. Mr. Qian Xu contributed to design and operating of the aerobic activated sludge bioreactor. Dr. Qiuyan Yuan supervised all aspects of the experimental study and contributed to improve the writing of the manuscript.

Corresponding author

Correspondence to Qiuyan Yuan.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M., Xu, Q. & Yuan, Q. Advanced biological sequential treatment of mature landfill leachate using aerobic activated sludge SBR and fungal bioreactor. J Environ Health Sci Engineer 18, 285–295 (2020). https://doi.org/10.1007/s40201-020-00466-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00466-z

Keywords

Navigation