Skip to main content
Log in

Effect of leachate loading rate and incubation period on the treatment efficiency by T. versicolor immobilized on foam cubes

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

This study focuses on treatment of landfill leachate in column experiments by immobilized Trametes versicolor on polyurethane foam, collected from Nonthaburi landfill site, Thailand. In this study, glucose was used as a co-substrate. The effect of biomass growth on color removal was observed by immobilizing fungi on polyurethane foam. The same immobilized fungi were used for four cycles of 5 days each to find the reuse of fungi. Leachate was diluted to see the effect of organic loading on color removal. At optimum pH of 4 and in 20 days with 3 g/L of glucose, the fungi could decolorize 78 % and 63 % for 5-times dilution and concentrated leachate, respectively, using immobilized fungi after 4 days initial growth. Fungi could also reduce biological oxygen demand and chemical oxygen demand of 52 % and 42 % (with initial biological oxygen demand and chemical oxygen demand of 48,900 and 96,512 mg/L), respectively, with glucose 3 g/L in concentrate leachate and with 4 days initial immobilization of fungi on polyurethane foam. About 1–6% higher color removal was observed on day 20 with 15 days fungi immobilization initially as compared to 4 days immobilization. Higher removal efficiency was observed for the same leachate after dilution due to reduction in organic loading. Addition of co-substrate enhances significantly removal of color, biological oxygen demand and chemical oxygen demand. Chemical oxygen demand removal reached to 0.6 mg/mg of biomass with the co-substrate. Therefore, white rot fungi can be considered as potentially useful microorganisms in landfill leachate treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaral, P. F. F.; Fernandes, D. L. A.; Tavares, A. P. M.; Xavier, A. B. M. R.; Cammarota, M. C.; Coutinho, J. A. P.; Coelho, M. A. Z., (2004). Decolorization of dyes from textilewastewater by Trametes versicolor. Environ. Tech., 25 (11), 1313–1320 (8 pages).

    Article  CAS  Google Scholar 

  • Benito, G. G.; Miranda, M. P.; Santos, D. R. l., (1997). Decolorization of wastewater from an alcoholic fermentation process with Trametes versicolor. Bioresour. Tech., 61 (1), 33–37 (5 pages).

    Article  CAS  Google Scholar 

  • Boominathan, K.; Reddy, C. A., (1992). Fungal degradation of lignin: Biotechnological applications. In: Arora D. K.; Elander R. P.; Mukherji K. G. (Eds.), Handbook of applied mycology. Dekker, M., New York, 763–782.

    Google Scholar 

  • Cerniglia, C. E., (1997). Fungal metabolism of polycyclic aromatic hydrocarbons, past, present and future applications in bioremediation. J. Ind. Microbiol. Biot., 19 (5-6), 324–333 (10 pages).

    Article  CAS  Google Scholar 

  • Chiemchaisri, C.; Srisukphun T., (2003). Performance of soil and compost mixture in leachate purification at intermediate cover layer of tropical landfill. In: IWA Conference on Environmental Biotechnology, Advancement on water and wastewater applications in the tropics. December 9-10, Kuala Lumpur, Malaysia.

    Google Scholar 

  • Daniel, G.; Volc, J.; Kubatova, E., (1994). Pyranose oxidase, a major source of H2O2 during wood degradation by Phanerochaete chrysosporium, Trametes versicolor and Oudemansiella mucida. Appl. Environ. Microbiol., 60 (7), 2524–2532 (9 pages).

    CAS  Google Scholar 

  • Erkurt, E. A.; Ünyayar, A.; Kumbur, H., (2007). Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochem., 42 (10), 1429–1435 (7 pages).

    Article  CAS  Google Scholar 

  • Fu, Y.; Viraraghavan, T., (2001). Fungal decolorization of Dye wastewaters: A review. Bioresource Technol., 79 (3), 251–262 (12 pages).

    Article  CAS  Google Scholar 

  • Kandelbauer, A.; Guebitz, G. M., (2005). Bioremediation for the decolorization of textile Dyes — A review. Enviro. Chem., 269-288 (20 pages).

  • Kim, S. J.; Shoda, M., (1999). Batch decolorization of molasses by suspended and immobilized fungus of geotrichum Candidum. J. Biosci. Bioeng., 88 (5), 586–589 (4 pages).

    Article  CAS  Google Scholar 

  • Kirk, T. K.; Connors, W. J.; Zeikus, J. C., (1976). Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi. Appl. Environ. Icrobiol., 32(1), 192–194 (3 pages).

    CAS  Google Scholar 

  • Kirk, T. K.; Farrell, R. L., (1987). Enzymatic “combustion” and the microbial degradation of lignin. Annu. Rev Microbiol., 41, 465–505 (41 pages).

    Article  CAS  Google Scholar 

  • Knapp, J. S.; Newby, P. S.; Reece, L. P., (1999). Decolorization of dyes by wood-rotting basidiomycete fungi. Enzyme Microb. Technol., 17 (7), 664–668 (5 pages).

    Article  Google Scholar 

  • Knapp, J. S.; Zhang, F. M.; Tapley, K. N., (1997). decolourisation of orange II by wood-rotting fungus. J. Chem. Technol. Biot., 69 (3), 289–296 (8 pages).

    Article  CAS  Google Scholar 

  • Lapadatescu, C.; Feron, G.; Vergoignan, C.; Djian, A.; Durand, A.; Bonnarme, P., (1997). Influence of cell immobilization on the production of Benzaldehyde and Benzyl Alcohol by the white-rot fungi bjerkandera adusta, ischnoderma benzoinum and dichomitus squalens. Appl. Microbiol. Biot., 47 (6), 708–714 (7 pages).

    Article  CAS  Google Scholar 

  • Machida, Y.; Nakanashi, T., (1984). purification and properties of pyranose oxidase from Coriolus versicolor. Agric Biol Chem., 48 (10), 2463–2470 (8 pages).

    Article  CAS  Google Scholar 

  • Martin, C.; Manzanares, A., (1994). A study of decolorization of straw soda pulping effluent by Tramestes versicolor. Bioresource Technol., 47 (3), 209–214 (6 pages).

    Article  CAS  Google Scholar 

  • Mehna, A., Bajpai, P.; Bajpai, P. K., (1995). Studies on decolorization of effluent from a small pulp mill utilizing agri-residues with Trametes versicolor. Enzyme Microb. Technol., 17 (1), 18–22 (5 pages).

    Article  CAS  Google Scholar 

  • Nakamura, Y; Mtui, G. S.; Tatsuro, S.; Masaaki, K., (1999). Lignin-degrading enzyme production by Bjerkandera adusta immobilized on polyurethane foam. J. Biosci. Bioeng., 88 (1), 41–47 (7 pages).

    Article  CAS  Google Scholar 

  • Nilsson, I.; Moller, A.; Mattiasson, B.; Trubindamayugi, M. S. T.; Welander, U., (2006). Decolorization of synthetic and real textile wastewater by the use of white-rot fungi. Enzyme Microb. Tech., 38(1–2), 94–100 (7 pages).

    Article  CAS  Google Scholar 

  • Paszczynski, A.; Crawford, R. L., (1995). Potential for bioremediation of xenobiotic compounds by the white rot fungus Phanerochaete chrysosporium. Biotech. Progr., 11 (4), 368–379 (12 pages).

    Article  CAS  Google Scholar 

  • Pointing, S. B., (2001). Feasibility of bioremediation by white rot fungi. Appl. Microbiol. Biotech., 57 (7), 20–33 (14 pages).

    CAS  Google Scholar 

  • PCD, (2005). Pollution Control Department, State of Thailand’s Pollution, http://www.pcd.go.th/public/report45.pdf

  • Reddy, A., (1995). The potential for white-rot fungi in the treatment of pollutants. Curr. Opin. Biotech., 6 (3), 320–328 (9 pages).

    Article  CAS  Google Scholar 

  • Sathiya Moorthi, P.; Periyar Selvam, S.; Sasikalaveni, A.; Murugesan, K.; Kalaichelvan, P. T., (2007). Decolorization of textile dyes and their effluents using white rot fungi. Af. J. Biotech., 6 (4), 424–429 (6 pages).

    Google Scholar 

  • Selvam, K.; Swaminathan, K.; Myung, H. S.; Keon-Sang, Ch., (2002). Biological treatment of a pulp and paper industry effluent by Fomes lividus and Trametes versicolor. World J. Microbiol. Biotech., 18 (6), 523–526 (4 pages).

    Article  CAS  Google Scholar 

  • Shah, V.; Nerud, F., (2002). Lignin degrading system of white- rot fungi and its exploitation for dye decolorization. Can. J. Microbiol., 48 (10), 857–870 (14 pages).

    Article  CAS  Google Scholar 

  • SMEW, (1998). Standard Methods for the Examination of Water, 20th. Ed. APHA, AWWA and WEF, Washington, DC.

    Google Scholar 

  • Swamy, J.; Ramsay, J. A., (1999). Effect of Mn2+ and ammonium concentration on laccase and manganese peroxidase production and amaranth decoloration by trametes versicolor. Appl. Microbiol. Biotech., 51 (3), 391–396 (6 pages).

    Article  CAS  Google Scholar 

  • Wu, J.; Xiao, Ya-Zhong,; Yu, Han-Qing, (2005). Degradation of lignin in pulp mill wastewaters by white rot fungi on biofilm. Bioresour. Tech., 96 (12), 1357–1363 (7 pages).

    Article  CAS  Google Scholar 

  • USEPA, (2007). Summary of the EPA municipal solid waste program.U.S. Environmental Protection Agency. http://www.epa.gov/reg3wcmd/solidwastesummary.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Babel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saetang, J., Babel, S. Effect of leachate loading rate and incubation period on the treatment efficiency by T. versicolor immobilized on foam cubes. Int. J. Environ. Sci. Technol. 6, 457–466 (2009). https://doi.org/10.1007/BF03326085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326085

Keywords

Navigation