Skip to main content
Log in

Poly (amidoamine) generation 6 functionalized Fe3O4@SiO2/GPTMS core–shell magnetic NPs as a new adsorbent for Arsenite adsorption: kinetic, isotherm and thermodynamic studies

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

In this survey a new route has been developed the preparation of poly (amidoamine) generation 6 (PAMAM-G6) dendrimer functionalized Fe3O4/SiO2 nanoparticle and was used for arsenite (As (III)) adsorption. SiO2 was first grafted onto the surface of Fe3O4 to formation a core–shell structure. Then the introduction of epoxy rings were done by hydrolysis of methylsilane groups of 3-Glycidoxypropyltrimethoxysilane (GPTMS) on OH groups of SiO2 and afterwards, PAMAM-G6 reacted with epoxy rings of GPTMS to obtain a multiamino magnetic adsorbent. The as-prepared nanocomposite was characterized by TEM, Zeta potential, FESEM, VSM, FTIR, Raman and XPS techniques. The effects of reaction time from 5 to 50 min, initial As (III) concentration in the range of 1–10 mgL−1, initial adsorbent concentration in the range of 10–50 mgL−1 and initial pH in the range 3–8 were studied. The resulting of kinetic and isotherm models displays high adsorption affinity (233 mg/g) for As (III) and the adsorbent can reach the adsorbent can reach the adsorption equilibrium at a neutral pH (7). The As (III) loaded nanocomposite could be separated readily from aqueous solution by magnetic and regenerated simply via NaOH. The study of the adsorption procedure showed that the pseudo-second order kinetics and Langmuir isotherm well-fitted with the experimental data of As (III) adsorption onto nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology. Basel: Springer; 2012. p. 133–64.

  2. Tapio S, Grosche B. Arsenic in the aetiology of cancer. Mutat Res/Rev Mutat Res. 2006;612(3):215–46.

    Article  CAS  Google Scholar 

  3. Tangahu BV, Abdullah S, Rozaimah S, Basri H, Idris M, Anuar N, et al. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. 2011;2011:1–31. https://doi.org/10.1155/2011/939161.

  4. Ma M-D, Wu H, Deng Z-Y, Zhao X. Arsenic removal from water by nanometer iron oxide coated single-wall carbon nanotubes. J Mol Liq. 2018;259:369–75.

    Article  CAS  Google Scholar 

  5. Wong W, Wong H, Badruzzaman ABM, Goh H, Zaman M. Recent advances in exploitation of nanomaterial for arsenic removal from water: a review. Nanotechnology. 2016;28(4):042001.

    Article  CAS  Google Scholar 

  6. Cheng Y-Y, Huang N-C, Chang Y-T, Sung J-M, Shen K-H, Tsai C-C, et al. Associations between arsenic in drinking water and the progression of chronic kidney disease: a nationwide study in Taiwan. J Hazard Mater. 2017;321:432–9.

    Article  CAS  Google Scholar 

  7. Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, et al. Synthesis and characterization of multi-amino-functionalized cellulose for arsenic adsorption. Carbohydr Polym. 2013;92(1):380–7.

    Article  CAS  Google Scholar 

  8. Asmel NK, Yusoff ARM, Krishna LS, Majid ZA, Salmiati S. High concentration arsenic removal from aqueous solution using nano-iron ion enrich material (NIIEM) super adsorbent. Chem Eng J. 2017;317:343–55.

    Article  CAS  Google Scholar 

  9. Ghosh A, Chakrabarti S, Ghosh UC. Fixed-bed column performance of Mn-incorporated iron (III) oxide nanoparticle agglomerates on As (III) removal from the spiked groundwater in lab bench scale. Chem Eng J. 2014;248:18–26.

    Article  CAS  Google Scholar 

  10. Ali I. New generation adsorbents for water treatment. Chem Rev. 2012;112(10):5073–91.

    Article  CAS  Google Scholar 

  11. AlOmar MK, Alsaadi MA, Hayyan M, Akib S, Hashim MA. Functionalization of CNTs surface with phosphonuim based deep eutectic solvents for arsenic removal from water. Appl Surf Sci. 2016;389:216–26.

    Article  CAS  Google Scholar 

  12. Rastegar A, Alahabadi A, Esrafili A, Rezai Z, Hosseini-Bandegharaei A, Nazari S. Application of supramolecular solvent-based dispersive liquid–liquid microextraction for trace monitoring of lead in food samples. Anal Methods. 2016;8(27):5533–9.

    Article  CAS  Google Scholar 

  13. Kavosi B, Salimi A, Hallaj R, Moradi F. Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy. Biosens Bioelectron. 2015;74:915–23.

    Article  CAS  Google Scholar 

  14. Gholami M, Nazari S, Farzadkia M, Mohseni SM, Alizadeh Matboo S, Akbari Dourbash F, et al. Nano polyamidoamine-G7 dendrimer synthesis and assessment the antibacterial effect in vitro. Tehran Univ Med J TUMS Publications. 2016;74(1):25–35.

    Google Scholar 

  15. Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G. Synthesis and characterization of PAMAM/CNT nanocomposite as a super-capacity adsorbent for heavy metal (Ni2+, Zn2+, As3+, Co2+) removal from wastewater. J Mol Liq. 2016;224:1032–40.

    Article  CAS  Google Scholar 

  16. Gholami M, Nazari S, Farzadkia M, Majidi G, Matboo SA. Assessment of nanopolyamidoamine-G7 dendrimer antibacterial effect in aqueous solution. Tehran Univ Med J. 2016;74(3):159–67.

    Google Scholar 

  17. Al-Khaldi FA, Abusharkh B, Khaled M, Atieh MA, Nasser M, Saleh TA, et al. Adsorptive removal of cadmium (II) ions from liquid phase using acid modified carbon-based adsorbents. J Mol Liq. 2015;204:255–63.

    Article  CAS  Google Scholar 

  18. Rastegar A, Nazari S, Allahabadi A, Falanji F, Dourbash FADA, Rezai Z, et al. Antibacterial activity of amino-and amido-terminated poly (amidoamine)-G6 dendrimer on isolated bacteria from clinical specimens and standard strains. Med J Islam Repub Iran. 2017;31:64.

    Article  Google Scholar 

  19. Valdés O, Vergara C, Nachtigall FM, Lopez-Cabaña Z, Tapia J, Santos LS. Pamam built-on-silicon wafer thin-layer extraction devices for selective metal contamination detection. Tetrahedron Lett. 2016;57(23):2468–73.

    Article  CAS  Google Scholar 

  20. Zhao X, Shi Y, Wang T, Cai Y, Jiang G. Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples. J Chromatogr A. 2008;1188(2):140–7.

    Article  CAS  Google Scholar 

  21. Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D. Amino-functionalized Fe 3 O 4@ SiO 2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci. 2010;349(1):293–9.

    Article  CAS  Google Scholar 

  22. Pasandideh EK, Kakavandi B, Nasseri S, Mahvi AH, Nabizadeh R, Esrafili A, et al. Silica-coated magnetite nanoparticles core-shell spheres (Fe 3 O 4@ SiO 2) for natural organic matter removal. J Environ Health Sci Eng. 2016;14(1):1–13.

    Article  CAS  Google Scholar 

  23. Acres RG, Ellis AV, Alvino J, Lenahan CE, Khodakov DA, Metha GF, et al. Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces. J Phys Chem C. 2012;116(10):6289–97.

    Article  CAS  Google Scholar 

  24. Zhang J-M, Zhai S-R, Zhai B, An Q-D, Tian G. Crucial factors affecting the physicochemical properties of sol–gel produced Fe3O4@ SiO2–NH2 core–shell nanomaterials. J Sol-Gel Sci Technol. 2012;64(2):347–57.

    Article  CAS  Google Scholar 

  25. Wang J, Zheng C, Ding S, Ma H, Ji Y. Behaviors and mechanisms of tannic acid adsorption on an amino-functionalized magnetic nanoadsorbent. Desalination. 2011;273(2):285–91.

    Article  CAS  Google Scholar 

  26. Gholami M, Mohammadi R, Arzanlou M, Dourbash FA, Kouhsari E, Majidi G, et al. In vitro antibacterial activity of poly (amidoamine)-G7 dendrimer. BMC Infect Dis. 2017;17(1):395.

    Article  CAS  Google Scholar 

  27. Srinivasan B, Huang X. Functionalization of magnetic nanoparticles with organic molecules: loading level determination and evaluation of linker length effect on immobilization. Chirality. 2008;20(3–4):265–77.

    Article  CAS  Google Scholar 

  28. Liu F, Niu F, Peng N, Su Y, Yang Y. Synthesis, characterization, and application of Fe 3 O 4@ SiO 2–NH 2 nanoparticles. RSC Adv. 2015;5(23):18128–36.

    Article  CAS  Google Scholar 

  29. Feng G, Hu D, Yang L, Cui Y. Cui X-a, Li H. immobilized-metal affinity chromatography adsorbent with paramagnetism and its application in purification of histidine-tagged proteins. Sep Purif Technol. 2010;74(2):253–60.

    Article  CAS  Google Scholar 

  30. Dourbash FA, Alizadeh P, Nazari S, Farasat A. A highly bioactive poly (amido amine)/70S30C bioactive glass hybrid with photoluminescent and antimicrobial properties for bone regeneration. Mater Sci Eng C. 2017;78:1135–46.

    Article  CAS  Google Scholar 

  31. Nazari S, Gholami M, Farzadkia M, Dourbash FA, Arzanlou M, Kalantary RR. Synthesis and evaluation of the antibacterial effect of silica-coated modified magnetic poly-(amidoamine) G5 nanoparticles on E. coli and S. aureus. J Mol Liq. 2018;276:93–104.

  32. Zhang Z, Li M, Chen W, Zhu S, Liu N, Zhu L. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Environ Pollut. 2010;158(2):514–9.

    Article  CAS  Google Scholar 

  33. Maleki A, Hayati B, Najafi F, Gharibi F, Joo SW. Heavy metal adsorption from industrial wastewater by PAMAM/TiO2 nanohybrid: preparation, characterization and adsorption studies. J Mol Liq. 2016;224:95–104.

    Article  CAS  Google Scholar 

  34. Tan Y, Chen M, Hao Y. High efficient removal of Pb (II) by amino-functionalized Fe3O4 magnetic nano-particles. Chem Eng J. 2012;191:104–11.

    Article  CAS  Google Scholar 

  35. Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G. Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. J Hazard Mater. 2017;336:146–57.

    Article  CAS  Google Scholar 

  36. Sheikhmohammadi A, Dahaghin Z, Mohseni SM, Sarkhosh M, Azarpira H, Atafar Z, et al. The synthesis and application of the SiO2@ Fe3O4@ MBT nanocomposite as a new magnetic sorbent for the adsorption of arsenate from aqueous solutions: modeling, optimization, and adsorption studies. J Mol Liq. 2018;255:313–23.

    Article  CAS  Google Scholar 

  37. Sheikhmohammadi A, Mohseni SM, Sardar M, Abtahi M, Mahdavi S, Keramati H, et al. Application of graphene oxide modified with 8-hydroxyquinoline for the adsorption of Cr (VI) from wastewater: optimization, kinetic, thermodynamic and equilibrium studies. J Mol Liq. 2017;233:75–88.

    Article  CAS  Google Scholar 

  38. Anirudhan TS, Senan P, Suchithra PS. Evaluation of iron (III)-coordinated amino-functionalized poly (glycidyl methacrylate)-grafted cellulose for arsenic (V) adsorption from aqueous solutions. Water Air Soil Pollut. 2011;220(1–4):101–16.

    Article  CAS  Google Scholar 

  39. Hermanson GT. Bioconjugate techniques. Cambridge: Academic Press; 2013.

  40. Hanim SAM, Malek NANN, Ibrahim Z. Analyses of surface area, porosity, silver release and antibacterial activity of amine-functionalized, silver-exchanged zeolite NaY. Vacuum. 2017;143:344–7.

    Article  CAS  Google Scholar 

  41. Muraliganth T, Murugan AV, Manthiram A. Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries. Chem Commun. 2009;47:7360–2.

    Article  CAS  Google Scholar 

  42. Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D. Amino-functionalized Fe3O4@ SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci. 2010;349(1):293–9.

    Article  CAS  Google Scholar 

  43. Jesionowski T, Ciesielczyk F, Krysztafkiewicz A. Influence of selected alkoxysilanes on dispersive properties and surface chemistry of spherical silica precipitated in emulsion media. Mater Chem Phys. 2010;119(1):65–74.

    Article  CAS  Google Scholar 

  44. Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G. Synthesis and characterization of PAMAM/CNT nanocomposite as a super-capacity adsorbent for heavy metal (Ni 2+, Zn 2+, As 3+, Co 2+) removal from wastewater. J Mol Liq. 2016;224:1032–40.

    Article  CAS  Google Scholar 

  45. Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G. Adsorption of Pb2+, Ni2+, Cu2+, Co2+ metal ions from aqueous solution by PPI/SiO2 as new high performance adsorbent: preparation, characterization, isotherm, kinetic, thermodynamic studies. 2017;237:428–36.

  46. Tan P, Sun J, Hu Y, Fang Z, Bi Q, Chen Y, et al. Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. J Hazard Mater. 2015;297:251–60.

    Article  CAS  Google Scholar 

  47. Martinson CA, Reddy K. Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. J Colloid Interf Sci. 2009;336(2):406–11.

  48. Saleh TA, Sarı A, Tuzen M. Chitosan-modified vermiculite for As (III) adsorption from aqueous solution: equilibrium, thermodynamic and kinetic studies. J Mol Liq. 2016;219:937–45.

  49. Niu Y, Qu R, Chen H, Mu L, Liu X, Wang T, et al. Synthesis of silica gel supported salicylaldehyde modified PAMAM dendrimers for the effective removal of Hg (II) from aqueous solution. J Hazard Mater. 2014;278:267–78.

  50. Martinson CA, Reddy K. Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. J Colloid Interface Sci. 2009;336(2):406–11.

    Article  CAS  Google Scholar 

  51. Saleh TA, Sarı A, Tuzen M. Chitosan-modified vermiculite for as (III) adsorption from aqueous solution: equilibrium, thermodynamic and kinetic studies. J Mol Liq. 2016;219:937–45.

    Article  CAS  Google Scholar 

  52. Niu Y, Qu R, Chen H, Mu L, Liu X, Wang T, et al. Synthesis of silica gel supported salicylaldehyde modified PAMAM dendrimers for the effective removal of hg (II) from aqueous solution. J Hazard Mater. 2014;278:267–78.

    Article  CAS  Google Scholar 

  53. Liu H, Liu W, Zhang J, Zhang C, Ren L, Li Y. Removal of cephalexin from aqueous solutions by original and cu (II)/Fe (III) impregnated activated carbons developed from lotus stalks kinetics and equilibrium studies. J Hazard Mater. 2011;185(2–3):1528–35.

    Article  CAS  Google Scholar 

  54. Moussavi G, Khosravi R. Removal of cyanide from wastewater by adsorption onto pistachio hull wastes: parametric experiments, kinetics and equilibrium analysis. J Hazard Mater. 2010;183(1–3):724–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the cooperation of students, professors, members of the expert panel, and all people who helped us throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Nazari.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, H., Gholami, M., Akbari, H. et al. Poly (amidoamine) generation 6 functionalized Fe3O4@SiO2/GPTMS core–shell magnetic NPs as a new adsorbent for Arsenite adsorption: kinetic, isotherm and thermodynamic studies. J Environ Health Sci Engineer 18, 253–265 (2020). https://doi.org/10.1007/s40201-020-00461-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00461-4

Keywords

Navigation