Skip to main content
Log in

Evaluation of phosphate removal from aqueous solution using metal organic framework; isotherm, kinetic and thermodynamic study

  • Research Article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Background

Phosphate (PO43−) is the main etiological factor of eutrophication in surface waters. Metal organic frameworks (MOFs) are novel hybrid materials with amazing structural properties that make them a prominent material for adsorption.

Methods

Zeolitic imidazolate framework 67 (ZIF-67), a water stable member of MOFs, with a truncated rhombic dodecahedron crystalline structure was synthesized in aqueous environment at room temperature and then characterized using XRD and SEM. PO43− adsorption from synthetic solutions using ZIF-67 in batch mode were evaluated and a polynomial model (R2: 0.99, R2adj: 0.98, LOF: 0.1433) developed using response surface methodology (RSM).

Results

The highest PO43− removal (99.2%) after model optimization obtained when ZIF-67 dose, pH and mixing time adjusted to 6.82, 832.4 mg/L and 39.95 min, respectively. The optimum PO43− concentration in which highest PO43− removal and lowest adsorbent utilization occurs, observed at 30 mg/L. PO43− removal eclipsed significantly in the presence of carbonate. The equilibrium and kinetic models showed that PO43− adsorbed in monolayer (qmax: 92.43 mg/g) and the sorption process controlled in the sorption stage. Adsorption was also more favorable at higher PO43− concentration, according to the separation factor (KR) graph. Thermodynamic parameters (minus signs of ∆G°, ∆H° of 0.179 KJ/mol and ∆S° of 44.91 KJ/mol.K) demonstrate the spontaneous, endothermic and physisorption nature of the process.

Conclusion

High adsorption capacity and adsorption rates, make ZIF-67 a promising adsorbent for PO43− removal from aqueous environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun Y, Sun Q, Huang H, Aguila B, Niu Z, Perman JA, et al. A molecular-level superhydrophobic external surface to improve the stability of metal–organic frameworks. J Mater Chem A. 2017;5(35):18770–6.

    Article  CAS  Google Scholar 

  2. Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2011;112(2):933–69.

    Article  Google Scholar 

  3. Shams M, Dehghani MH, Nabizadeh R, Mesdaghinia A, Alimohammadi M, Najafpoor AA. Adsorption of phosphorus from aqueous solution by cubic zeolitic imidazolate framework-8: modeling, mechanical agitation versus sonication. J Mol Liq. 2016;224:151–7.

    Article  CAS  Google Scholar 

  4. Yin Z, Wan S, Yang J, Kurmoo M, Zeng M-H. Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions. J Coord Chem. 2017;In Press.

  5. Li S, Zhang X, Huang Y. Zeolitic imidazolate framework-8 derived nanoporous carbon as an effective and recyclable adsorbent for removal of ciprofloxacin antibiotics from water. J Hazard Mater. 2017;321:711–9.

    Article  CAS  Google Scholar 

  6. Zhang L, Su Z, Jiang F, Yang L, Qian J, Zhou Y, et al. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale. 2014;6(12):6590–602.

    Article  CAS  Google Scholar 

  7. Chaikittisilp W, Hu M, Wang H, Huang H-S, Fujita T, Wu KC-W, et al. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Comm. 2012;48(58):7259–61.

    Article  CAS  Google Scholar 

  8. Li J, Zhu Q-L, Xu Q. Pd nanoparticles supported on hierarchically porous carbons derived from assembled nanoparticles of a zeolitic imidazolate framework (ZIF-8) for methanol electrooxidation. Chem Comm. 2015;51(54):10827–30.

    Article  CAS  Google Scholar 

  9. Hao L, Wang C, Wu Q, Li Z, Zang X, Wang Z. Metal–organic framework derived magnetic nanoporous carbon: novel adsorbent for magnetic solid-phase extraction. Anal Chem. 2014;86(24):12199–205.

    Article  CAS  Google Scholar 

  10. Jian M, Liu B, Zhang G, Liu R, Zhang X. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids Surf A Physicochem Eng Asp. 2015;465:67–76.

    Article  CAS  Google Scholar 

  11. Liu B, Jian M, Liu R, Yao J, Zhang X. Highly efficient removal of arsenic (III) from aqueous solution by zeolitic imidazolate frameworks with different morphology. Colloids Surf A Physicochem Eng Asp. 2015;481:358–66.

    Article  CAS  Google Scholar 

  12. Yan X, Hu X, Chen T, Zhang S, Zhou M. Adsorptive removal of 1-naphthol from water with Zeolitic imidazolate framework-67. J Phys Chem Solids. 2017;107(8):50–4.

    Article  CAS  Google Scholar 

  13. Yong P, Zhi L, Zhe Z, Xiong-Shi T, Hai L, Chong-Zhi J, et al. Adsorptive removal of phenol from aqueous solution with zeolitic imidazolate framework-67. J Environ Manag. 2016;169(169):167–73.

    Google Scholar 

  14. Huang Y, Zeng X, Guo L, Lan J, Zhang L, Cao D. Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Sep Purif Technol. 2018;194:462–9.

    Article  CAS  Google Scholar 

  15. Liu J, Wu Y, Wu C, Muylaert K, Vyverman W, Yu H-Q, et al. Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: a review. Bioresour Technol. 2017;241:1127–37.

    Article  CAS  Google Scholar 

  16. Mahvi AH. Ebrahimi SJA-d, Mesdaghinia a, Gharibi H, Sowlat MH. Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation–electroflotation (ECEO–EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent. J Hazard Mater. 2011;192(3):1267–74.

    Article  CAS  Google Scholar 

  17. Rafati L, Nabizadeh R, Mahvi AH, Dehghani MH. Removal of phosphate from aqueous solutions by iron nano-particle resin Lewatit (FO36). Korean J Chem Eng. 2012;29(4):473–7.

    Article  CAS  Google Scholar 

  18. Khalil AM, Eljamal O, Amen TW, Sugihara Y, Matsunaga N. Optimized nano-scale zero-valent iron supported on treated activated carbon for enhanced nitrate and phosphate removal from water. Chem Eng J. 2017;309:349–65.

    Article  CAS  Google Scholar 

  19. Khazaei M, Nabizadeh R, Mahvi AH, Izanloo H, Ansari Tadi R, Gharagazloo F. Nitrogen and phosphorous removal from aerated lagoon effluent using horizontal roughing filter (HRF). Desalin Water Treat. 2016;57(12):5425–34.

    Article  CAS  Google Scholar 

  20. Yousefi N, Fatehizedeh A, Ghadiri K, Mirzaei N, Ashrafi SD, Mahvi AH. Application of nanofilter in removal of phosphate, fluoride and nitrite from groundwater. Desalin Water Treat. 2016;57(25):11782–8.

    Article  CAS  Google Scholar 

  21. Malakootian M, Yousefi N, Fatehizadeh A, Van Ginkel SW, Ghorbani M, Rahimi S, et al. Nickel (II) removal from industrial plating effluent by Fenton process. Environ Eng Manag J. 2015;14(4):837–42.

    Article  CAS  Google Scholar 

  22. Ahmadian M, Yosefi N, Toolabi A, Khanjani N, Rahimi S, Fatehizadeh A. Adsorption of Direct Yellow 9 and Acid Orange 7 from Aqueous Solutions by Modified Pumice. Asian J Chem. 2012;24(7).

  23. Pourfadakari S, Yousefi N, Mahvi AH. Removal of reactive red 198 from aqueous solution by combined method multi-walled carbon nanotubes and zero-valent iron: equilibrium, kinetics, and thermodynamic. Chin J Chem Eng. 2016;24(10):1448–55.

    Article  CAS  Google Scholar 

  24. Rezaee R, Maleki A, Jafari A, Mazloomi S, Zandsalimi Y, Mahvi AH. Application of response surface methodology for optimization of natural organic matter degradation by UV/H2O2 advanced oxidation process. J Environ Health Sci Eng. 2014;12(1):67.

    Article  Google Scholar 

  25. Arslan A, Topkaya E, Bingöl D, Veli S. Removal of anionic surfactant sodium dodecyl sulfate from aqueous solutions by O3/UV/H2O2 advanced oxidation process: process optimization with response surface methodology approach. Sustain Environ Res. 2017;28(2):65–71.

    Article  Google Scholar 

  26. Im J-K, Cho I-H, Kim S-K, Zoh K-D. Optimization of carbamazepine removal in O3/UV/H2O2 system using a response surface methodology with central composite design. Desalination. 2012;285:306–14.

    Article  CAS  Google Scholar 

  27. Guo X, Xing T, Lou Y, Chen J. Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. J Solid State Chem. 2016;235:107–12.

    Article  CAS  Google Scholar 

  28. Qu J, Meng X, You H, Ye X, Du Z. Utilization of rice husks functionalized with xanthates as cost-effective biosorbents for optimal cd (II) removal from aqueous solution via response surface methodology. Bioresour Technol. 2017;241:1036–42.

    Article  CAS  Google Scholar 

  29. Du X-D, Wang C-C, Liu J-G, Zhao X-D, Zhong J, Li Y-X, et al. Extensive and selective adsorption of ZIF-67 towards organic dyes: performance and mechanism. J Colloid Interface Sci. 2017;506:437–41.

    Article  CAS  Google Scholar 

  30. Dehghan A, Zarei A, Jaafari J, Shams M, Khaneghah AM. Tetracycline removal from aqueous solutions using zeolitic imidazolate frameworks with different morphologies: a mathematical modeling. Chemosphere. 2018.

  31. Qasemi M, Afsharnia M, Zarei A, Najafpoor AA, Salari S, Shams M. Phenol removal from aqueous solution using Citrullus colocynthis waste ash. Data Brief. 2018;18:620–8.

    Article  Google Scholar 

  32. Yoon H-S, Chung KW, Kim C-J, Kim J-H, Lee H-S, Kim S-J, et al. Characteristics of phosphate adsorption on ferric hydroxide synthesized from a Fe 2 (SO 4) 3 aqueous solution discharged from a hydrometallurgical process. Korean J Chem Eng. 2018;35(2):470–8.

    Article  CAS  Google Scholar 

  33. Xiong W, Tong J, Yang Z, Zeng G, Zhou Y, Wang D, et al. Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: performance and mechanism. J Colloid Interface Sci. 2017;493:17–23.

    Article  CAS  Google Scholar 

  34. Fang L, Wu B, Lo IM. Fabrication of silica-free superparamagnetic ZrO2@ Fe3O4 with enhanced phosphate recovery from sewage: performance and adsorption mechanism. Chem Eng J. 2017;319:258–67.

    Article  CAS  Google Scholar 

  35. Lai L, Xie Q, Chi L, Gu W, Wu D. Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide. J Colloid Interface Sci. 2016;465:76–82.

    Article  CAS  Google Scholar 

  36. Dong S, Wang Y, Zhao Y, Zhou X, Zheng H. La3+/La (OH)3 loaded magnetic cationic hydrogel composites for phosphate removal: effect of lanthanum species and mechanistic study. Water Res. 2017;126:433–41.

    Article  CAS  Google Scholar 

  37. Riahi K, Thayer BB, Mammou AB, Ammar AB, Jaafoura MH. Biosorption characteristics of phosphates from aqueous solution onto Phoenix dactylifera L. date palm fibers. J Hazard Mater. 2009;170(2–3):511–9.

    Article  CAS  Google Scholar 

  38. Huang W-Y, Li D, Liu Z-Q, Tao Q, Zhu Y, Yang J, et al. Kinetics, isotherm, thermodynamic, and adsorption mechanism studies of La (OH)3-modified exfoliated vermiculites as highly efficient phosphate adsorbents. Chem Eng J. 2014;236:191–201.

    Article  CAS  Google Scholar 

  39. Xie Q, Li Y, Lv Z, Zhou H, Yang X, Chen J, et al. Effective adsorption and removal of phosphate from aqueous solutions and eutrophic water by Fe-based MOFs of MIL-101. Sci Rep. 2017;7(1):3316.

    Article  Google Scholar 

  40. Lin J, Wang X, Zhan Y. Effect of precipitation pH and coexisting magnesium ion on phosphate adsorption onto hydrous zirconium oxide. J Environ Sci. 2018(In Press).

  41. Lin J, Zhang Z, Zhan Y. Effect of humic acid preloading on phosphate adsorption onto zirconium-modified zeolite. Environ Sci Pollut Res. 2017;24(13):12195–211.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the financial support provided by Ilam University of Medical Science, Iran (Grant Number: 974001-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Shams.

Ethics declarations

Conflict of interest

The authors of this article declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazloomi, S., Yousefi, M., Nourmoradi, H. et al. Evaluation of phosphate removal from aqueous solution using metal organic framework; isotherm, kinetic and thermodynamic study. J Environ Health Sci Engineer 17, 209–218 (2019). https://doi.org/10.1007/s40201-019-00341-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-019-00341-6

Keywords

Navigation