Skip to main content
Log in

The stability of cardiometabolic risk factors clustering in children and adolescents: a 2-year longitudinal study

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Objective

The present study aims to verify the odds of remaining with the clustering of 3 or more, 4 or more, and 5 or more risk factors across a 2-year time span.

Methods

Observational longitudinal study that included 358 children and adolescents (10.96 ± 2.28 years of age at baseline). Cardiorespiratory fitness, glucose, systolic blood pressure, total cholesterol/high-density lipoprotein cholesterol ratio, triglycerides, and waist circumference were assessed. The number of children in whom the risk factors were not independently distributed was analyzed. Odds ratios of presenting n risk factors clustered at follow-up according to the number of risk factors observed at baseline were calculated.

Results

More participants than expected were found presenting clustering of 4 or more and 5 or more risk factors at both baseline (11.7% and 5.6%, respectively) and follow-up (9.5% and 5.6%, respectively). The odds ratios calculated demonstrated that the odds of presenting the same number of risk factors clustered or more at follow-up increased according to the number of risk factors clustered at baseline.

Conclusion

The higher the number of risk factors a child had at baseline, the higher the odds of presenting the same number of risk factors or more after two years of follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are available under reasonable request with the corresponding author.

References

  1. WHO. Noncommunicable diseases progress monitor 2022. 2022. https://www.who.int/publications/i/item/9789240047761. Accessed 12 Sep 2022.

  2. Chung ST, Onuzuruike AU, Magge SN. Cardiometabolic risk in obese children. Ann N Y Acad Sci. 2018;1411:166–83.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Martinez SM, Blanco E, Burrows R, Lozoff B, Gahagan S. Mechanisms linking childhood weight status to metabolic risk in adolescence. Pediatr Diabetes. 2020;21:203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reuter CP, Renner JDP, de Castro Silveira JF, da Silva PT, Lima RA, Pfeiffer KA, et al. Clustering of cardiometabolic risk factors and the continuous cardiometabolic risk score in children from southern Brazil: a cross-sectional study. J Diabetes Metab Disord. 2021;20:1221–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Welser L, Lima RA, Silveira JF de C, Andersen LB, Pfeiffer KA, Renner JDP, et al. Cardiometabolic risk factors in children and adolescents from southern Brazil: comparison to international reference values. J Pediatr Endocrinol Metab 2021;34:1237–1246.

  6. Andersen LB, Lauersen JB, Brønd JC, Anderssen SA, Sardinha LB, Steene-Johannessen J, et al. A new approach to define and diagnose Cardiometabolic disorder in children. J Diabetes Res. 2015:1–10.

  7. Delgado Floody P, Martínez Salazar C, Caamaño Navarrete F, Jerez Mayorga D, Osorio Poblete A, García Pinillos F, et al. Insatisfacción con la imagen corporal y su relación con el estado nutricional, riesgo cardiometabólico y capacidad cardiorrespiratoria en niños pertenecientes a centros educativos públicos. Nutr Hosp. 2017;34:1044–9.

    PubMed  Google Scholar 

  8. Pogodina A, Rychkova L, Kravtzova O, Klimkina J, Kosovtzeva A. Cardiometabolic risk factors and health-related quality of life in adolescents with obesity. Child Obes. 2017;13:499–506.

    Article  PubMed  Google Scholar 

  9. Kelishadi R, Mirmoghtadaee P, Najafi H, Keikha M. Systematic review on the association of abdominal obesity in children and adolescents with cardio-metabolic risk factors. J Res Med Sci. 2015;20:294–307.

    PubMed  PubMed Central  Google Scholar 

  10. Palhares HM da C, da Silva AP, Resende DCS, Pereira G de A, Rodrigues-Júnior V, Borges M de F. Evaluation of clinical and laboratory markers of cardiometabolic risk in overweight and obese children and adolescents. Clinics. 2017;72:36–43.

  11. Saldanha Filho N, Reuter CP, Renner JDP, Barbian CD, De Castro Silveira JF, De Borba SL, et al. Low levels of cardiorespiratory fitness and abdominal resistance are associated with metabolic risk in schoolchildren. J Pediatr Endocrinol Metab. 2019;32:455–60.

    Article  CAS  PubMed  Google Scholar 

  12. Saldanha Filho N, Reuter CP, Silveira JF de C, Borfe L, Renner JDP, Pohl HH. Low performance-related physical fitness levels are associated with clustered cardiometabolic risk score in schoolchildren: a cross-sectional study. Hum Mov 2022;23:113–119.

  13. Bugge A, El-Naaman B, Mcmurray RG, Froberg K, Andersen LB. Tracking of clustered cardiovascular disease risk factors from childhood to adolescence. Pediatr Res. 2013;73:245–9.

    Article  PubMed  Google Scholar 

  14. Camhi SM, Katzmarzyk PT. Tracking of cardiometabolic risk factor clustering from childhood to adulthood. Int J Pediatr Obes. 2010;5:122–9.

    Article  PubMed  Google Scholar 

  15. Laitinen T, Laitinen TT, Pahkala K, Magnussen CG, Viikari JSA, Oikonen M, et al. Ideal cardiovascular health in childhood and cardiometabolic outcomes in adulthood: the cardiovascular risk in young finns study. Circulation. 2012;125:1971–8.

    Article  PubMed  Google Scholar 

  16. Silveira JF, Reuter CP, Welser L, Pfeiffer KA, Andersen LB, Pohl HH, et al. Tracking of cardiometabolic risk in a Brazilian schoolchildren cohort: a 3-year longitudinal study. J Sports Med Phys Fitness. 2021;61.

  17. Daniels SR, Pratt CA, Hayman LL. Reduction of risk for cardiovascular disease in children and adolescents. Circulation. 2011;124:1673–86.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tanrikulu MA, Agirbasli M, Berenson G. Primordial prevention of cardiometabolic risk in childhood. Adv Exp Med Biol. 2017;956:489–96.

    Article  PubMed  Google Scholar 

  19. Ruiz LD, Zuelch ML, Dimitratos SM, Scherr RE. Adolescent obesity: diet quality, psychosocial health, and cardiometabolic risk factors. Nutrients. 2020;12.

  20. Halfon N, Verhoef PA, Kuo AA. Childhood antecedents to adult cardiovascular disease. Pediatr Rev. 2012;33:51–61.

    Article  PubMed  Google Scholar 

  21. SurveyMonkey. Sample size calculator. https://www.surveymonkey.com/mp/sample-size-calculator/.

  22. Taylor RW, Jones IE, Williams SM, Goulding A. Evaluation of waist circumference, waist-to-hip ratio, and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray absorptiometry, in children aged 3–19 y. Am J Clin Nutr. 2000;72:490–5.

    Article  CAS  PubMed  Google Scholar 

  23. SBC, SBH, SBN. VI Diretrizes Brasileiras de Hipertensão. Arq Bras Cardiol 2010;1 Suppl. 1:1–51.

  24. PROESP-BR. Manual de testes e avaliação. 2012. https://www.ufrgs.br/proesp/.

  25. Altman DG. Theoretical distributions. In: Practical statistics for medical research. London: Chapman & Hall; 1991. p. 68–70.

    Google Scholar 

  26. Cumming G. Understanding the new statistics - effect sizes, confidence intervals, and meta-analysis. New York: Routledge; 2012.

    Google Scholar 

  27. Field A. Discovering statistics using IBM SPSS statistics. 5th ed. London: SAGE; 2017.

    Google Scholar 

  28. Buchan DS, Boddy LM, Young JD, Cooper SM, Noakes TD, Mahoney C, et al. Relationships between cardiorespiratory and muscular fitness with Cardiometabolic risk in adolescents. Res Sports Med. 2015;23:227–39.

    Article  PubMed  Google Scholar 

  29. Reuter CP, Burgos MS, Barbian CD, Renner JDP, Franke SIR, de Mello ED. Comparison between different criteria for metabolic syndrome in schoolchildren from southern Brazil. Eur J Pediatr. 2018;177:1471–7.

    Article  PubMed  Google Scholar 

  30. Lavie CJ, De Schutter A, Parto P, Jahangir E, Kokkinos P, Ortega FB, et al. Obesity and prevalence of cardiovascular diseases and prognosis-the obesity paradox updated. Prog Cardiovasc Dis. 2016;58:537–47.

    Article  PubMed  Google Scholar 

  31. García-Hermoso A, Ramírez-Vélez R, Garciá-Alonso Y, Alonso-Martínez AM, Izquierdo M. Association of Cardiorespiratory Fitness Levels during youth with health risk later in life: A systematic review and Meta-analysis. JAMA Pediatr. 2020;174:952–60.

    Article  PubMed  Google Scholar 

  32. Mintjens S, Menting MD, Daams JG, van Poppel MNM, Roseboom TJ, Gemke RJBJ. Cardiorespiratory fitness in childhood and adolescence affects future cardiovascular risk factors: A systematic review of longitudinal studies. Sports Med. 2018;48:2577–605.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Umer A, Kelley GA, Cottrell LE, Giacobbi P, Innes KE, Lilly CL. Childhood obesity and adult cardiovascular disease risk factors: A systematic review with meta-analysis. BMC Public Health. 2017;17.

  34. Lima RA, Bugge A, Ersbøll AK, Stodden DF, Andersen LB. The longitudinal relationship between motor competence and measures of fatness and fitness from childhood into adolescence. J Pediatr. 2019;95:482–8.

    Article  Google Scholar 

  35. Reuter CP, Brand C, Silveira JF de C, de Borba Schneiders L, Renner JDP, Borfe L, et al. Reciprocal longitudinal relationship between fitness, fatness, and metabolic syndrome in Brazilian children and adolescents: A 3-year longitudinal study. Pediatr Exerc Sci 2021;33:74–81.

  36. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019. J Am Coll Cardiol. 2020;76:2982–3021.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Muka T, Imo D, Jaspers L, Colpani V, Chaker L, van der Lee SJ, et al. The global impact of non-communicable diseases on healthcare spending and national income: a systematic review. Eur J Epidemiol. 2015;30:251–77.

    Article  PubMed  Google Scholar 

  38. Andersen LB, Sardinha L, Froberg K, Riddoch CJ, Page AS, Anderssen SA. Fitness, fatness and clustering of cardiovascular risk factors in children from Denmark, Estonia and Portugal: the European youth heart study. Int J Pediatr Obes. 2008;3(Suppl.1):58–66.

    Article  PubMed  Google Scholar 

  39. Suglia SF, Koenen KC, Boynton-Jarrett R, Chan PS, Clark CJ, Danese A, et al. Childhood and adolescent adversity and Cardiometabolic outcomes: A scientific statement from the American Heart Association. Circulation. 2018;137:15–28.

    Article  Google Scholar 

  40. Craigie AM, Lake AA, Kelly SA, Adamson AJ, Mathers JC. Tracking of obesity-related behaviours from childhood to adulthood: A systematic review. Maturitas. 2011;70:266–84.

    Article  PubMed  Google Scholar 

  41. García-Hermoso A, Agostinis-Sobrinho C, Mota J, Santos RM, Correa-Bautista JE, Ramírez-Vélez R. Adiposity as a full mediator of the influence of cardiorespiratory fitness and inflammation in schoolchildren: the FUPRECOL study. Nutr Metab Cardiovasc Dis. 2017;27:525–33.

    Article  PubMed  Google Scholar 

  42. Sun C, Magnussen CG, Ponsonby AL, Schmidt MD, Carlin JB, Huynh Q, et al. The contribution of childhood cardiorespiratory fitness and adiposity to inflammation in young adults. Obesity. 2014;22:2598–605.

    PubMed  Google Scholar 

  43. Wedell-Neergaard AS, Eriksen L, Grønbæk M, Pedersen BK, Krogh-Madsen R, Tolstrup J. Low fitness is associated with abdominal adiposity and low-grade inflammation independent of BMI. PLoS One. 2018;13.

  44. Lima RA, Andersen LB, Soares FC, Kriemler S. The causal pathway effects of a physical activity intervention on adiposity in children: the KISS study cluster randomized clinical trial. Scand J Med Sci Sports. 2020;30:1685–91.

    Article  PubMed  PubMed Central  Google Scholar 

  45. García-Hermoso A, Ramírez-Vélez R, Saavedra JM. Exercise, health outcomes, and pædiatric obesity: A systematic review of meta-analyses. J Sci Med Sport. 2019;22:76–84.

    Article  PubMed  Google Scholar 

  46. Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World health organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54:1451–62.

    Article  PubMed  Google Scholar 

  47. Chaput JP, Willumsen J, Bull F, Chou R, Ekelund U, Firth J, et al. 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5–17 years: summary of the evidence. Int J Behav Nutr Phys Act. 2020;17:141.

    Article  PubMed  PubMed Central  Google Scholar 

  48. AAP. American Academy of Pediatrics. Children, adolescents, and television. Pediatrics. 2001;107:423–6.

    Article  Google Scholar 

  49. Quist JS, Sjödin A, Chaput JP, Hjorth MF. Sleep and cardiometabolic risk in children and adolescents. Sleep Med Rev. 2016;29:76–100.

    Article  PubMed  Google Scholar 

  50. Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, et al. National sleep foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health. 2015;1:40–3.

    Article  PubMed  Google Scholar 

  51. Dabelea D, Mayer-Davis EJ, Saydah S, Imperatore G, Linder B, Divers J, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA - Journal of the American Medical Association. 2014;311:1778–86.

    Article  CAS  PubMed  Google Scholar 

  52. Stavnsbo M, Resaland GK, Anderssen SA, Steene-Johannessen J, Domazet SL, Skrede T, et al. Reference values for cardiometabolic risk scores in children and adolescents: suggesting a common standard. Atherosclerosis. 2018;278:299–306.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Francisco de Castro Silveira.

Ethics declarations

Ethics approval

The study was approved by the Committee of Ethics in Research with Human Subjects of the University of Santa Cruz do Sul (UNISC), under number 714.216.

Consent to participate and for publication

All parents or guardians were informed about the study objectives and signed informed consent.

Competing interests

The authors state no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 225 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro Silveira, J.F., Sehn, A.P., da Silva, L. et al. The stability of cardiometabolic risk factors clustering in children and adolescents: a 2-year longitudinal study. J Diabetes Metab Disord 22, 529–538 (2023). https://doi.org/10.1007/s40200-022-01174-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-022-01174-1

Keywords

Navigation