Skip to main content

Advertisement

Log in

In silico screening, synthesis, characterization and biological evaluation of novel anticancer agents as potential COX-2 inhibitors

  • Research Article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Background

Cyclooxygenase enzyme is frequently overexpressed in various types of cancer and found to play a crucial role in poor prognosis in cancer patients. In current research, we have reported the new COX-2 inhibitors for cancer treatment using computer-aided drug design and experimental validation.

Methods

A total of 12,795 compounds from the different databases were used to screen against the COX-2 enzyme. It perceived three new compounds with better binding affinity to the enzyme. Afterwards, physicochemical properties and in silico bioactivity were assessed for efficacy, safety, and structural features required for binding. The molecules were synthesized and confirmed by spectroscopic techniques. Later on, molecules were evaluated for their anti-cancer activity using MCF-7, MDA-MB-231 and SiHa cancer cell lines.

Results

Compound ZINC5921547 and ZINC48442590 (4a, and 4b) reduced the MCF-7, MDA-MB-231, and SiHa cells proliferation potently than parent compounds. The PG-E2 estimation shown, both compounds act through the COX-2 PGE2 axis. Compound 4a and 4b block the cell cycle at G1-S phase and induce cancer cell death.

Conclusions

We concluded that compounds 4a and 4b effectively promotes cancer cell death via COX-2 PGE2 axis, and further in vivo studies can be evaluated for development in both compounds as anticancer agents. The compilation of this information will help us to generate better outcome through robust computational methods. The high-quality experimental results may pave the way for identifying effective drug candidates for cancer treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

COX-2:

Cyclooxygenase-2

NSAIDs:

Non-Steroid Anti-Inflammatory Drugs

PGE2:

Prostaglandin E2

PDB:

Protein Data Bank

MMGBSA:

Molecular Mechanics/Generalized Born Surface Area

ADMET:

Adsorption, Distribution, Metabolism, Excretion, and Toxicity

FT-IR:

Fourier-transform infrared spectroscopy

NMR:

Nuclear magnetic resonance

MTT:

(3-(4,5-Dimethylthiazol-2-yl)

DMSO:

Dimethylsulfoxide

DMF:

Dimethylformamide

References

  1. Chandrasekharan NV, Simmons DL. The cyclooxygenases. Genome Biol. 2004;5: 241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Clària J. Cyclooxygenase-2 biology. Curr Pharm Des. 2003;9:2177–90.

    Article  PubMed  Google Scholar 

  3. Chow LWC, Loo WTY, Toi M. Current directions for COX-2 inhibition in breast cancer. Biomed Pharmacother. 2005;59(Suppl 2):281–4.

    Article  Google Scholar 

  4. Botting RM, Botting JH. The discovery of COX-2. In: Pairet M, van Ryn J, editors. COX-2 Inhibitors [Internet]. Basel: Birkhäuser; 2004 [cited 2023 Jan 3]. p. 1–13. Available from: https://doi.org/10.1007/978-3-0348-7879-1_1.

  5. Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M. The role of Cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol. 2010;2010:e215158 (Hindawi).

    Article  Google Scholar 

  6. Müller-Decker K, Fürstenberger G. The cyclooxygenase-2-mediated prostaglandin signaling is causally related to epithelial carcinogenesis. Mol Carcinog. 2007;46:705–10.

    Article  PubMed  Google Scholar 

  7. Cervello M, Montalto G. Cyclooxygenases in hepatocellular carcinoma. World J Gastroenterol. 2006;12:5113–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Botting RM. Inhibitors of cyclooxygenases: mechanisms, selectivity and uses. J Physiol Pharmacol. 2006;57(Suppl 5):113–24.

    PubMed  Google Scholar 

  9. Sahu A, Raza K, Pradhan D, Jain AK, Verma S. Cyclooxygenase-2 as a therapeutic target against human breast cancer: a comprehensive review. WIREs Mech Dis. 2023;15(3):e1596. https://doi.org/10.1002/wsbm.1596.

  10. Kizhakkeppurath Kumaran A, Sahu A, Singh A, Aynikkattil Ravindran N, Chatterjee NS, Mathew S, Verma S. Proteoglycans in breast cancer, identification and characterization by LC-MS/MS assisted proteomics approach: a review. Proteomics Clin Appl. 2023;e2200046. https://doi.org/10.1002/prca.202200046.

  11. Yadav MK, Sahu A, Anu, Kasturria N, Priyadarshini A, Gupta A et al. Clinical Applications of Protein-Based Therapeutics. In: Singh DB, Tripathi T, editors. Protein-based Therapeutics [Internet]. Singapore: Springer Nature; 2023 [cited 2023 Mar 10]. p. 23–47. Available from: https://doi.org/10.1007/978-981-19-8249-1_2.

  12. Sahu A, Verma S, Varma M, Yadav MK. Impact of ErbB receptors and anticancer drugs against breast cancer: a review. Curr Pharm Biotechnol. 2022;23(6):787–802. https://doi.org/10.2174/1389201022666210719161453.

  13. Gong Z, Huang W, Wang B, Liang N, Long S, Li W, et al. Interplay between cyclooxygenase–2 and microRNAs in cancer (review). Mol Med Rep Spandidos Publications. 2021;23:1–10.

    Google Scholar 

  14. Howe LR. Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res. 2007;9:210.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ye Y, Wang X, Jeschke U. von Schönfeldt V. COX-2-PGE2-EPs in gynecological cancers. Arch Gynecol Obstet. 2020;301:1365–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saeedian Moghadam E, Hamel E, Shahsavari Z, Amini M. Synthesis and anti-breast cancer activity of novel indibulin related diarylpyrrole derivatives. DARU J Pharm Sci. 2019;27:179–89.

    Article  CAS  Google Scholar 

  17. Qureshi O, Dua A. COX Inhibitors. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Apr 23]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK549795/.

  18. Kolawole OR, Kashfi K. NSAIDs and cancer resolution: new paradigms beyond cyclooxygenase. Int J Mol Sci. 2022;23:1432 (Multidisciplinary Digital Publishing Institute).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mosalpuria K, Hall C, Krishnamurthy S, Lodhi A, Hallman DM, Baraniuk MS, et al. Cyclooxygenase-2 expression in non-metastatic triple-negative breast cancer patients. Mol Clin Oncol. 2014;2:845–50.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tian J, Wang V, Wang N, Khadang B, Boudreault J, Bakdounes K, et al. Identification of MFGE8 and KLK5/7 as mediators of breast tumorigenesis and resistance to COX-2 inhibition. Breast Cancer Res. 2021;23:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sahu A, Pradhan D, Raza K, Qazi S, Jain AK, Verma S. In silico library design, screening and MD simulation of COX-2 inhibitors for anticancer activity. In: 12th International Conference on Bioinformatics and Computational Biology. EPiC Series in Computing. EPiC Series in Computing. 2020;70:21–32.

  22. Bajorath J. Computer-aided drug discovery. F1000Res [Internet]. 2015;4:1–8 [cited 2018 Oct 29]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756805/https://doi.org/10.12688/f1000research.6653.1.

  23. Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3:935–49.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang H, Zeng B, Chen G-L, Bot D, Eastmond S, Elsenussi SE, et al. Effect of non-steroidal anti-inflammatory drugs and new fenamate analogues on TRPC4 and TRPC5 channels. Biochem Pharmacol. 2012;83:923–31.

    Article  CAS  PubMed  Google Scholar 

  25. Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem Pharmacol. 2020;180: 114147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mathew B, Hobrath JV, Lu W, Li Y, Reynolds RC. Synthesis and preliminary assessment of the anticancer and Wnt/β-catenin inhibitory activity of small amide libraries of fenamates and profens. Med Chem Res. 2017;26:3038–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li J, Mansmann UR. Modeling of non-steroidal anti-inflammatory drug effect within signaling pathways and miRNA-regulation pathways. PLOS ONE. 2013;8:e72477 (Public Library of Science).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. El-Sheikh A, Khired Z. Interactions of analgesics with cisplatin: modulation of anticancer efficacy and potential organ toxicity. Med (Kaunas). 2021;58:46.

    Google Scholar 

  29. Moris D, Kontos M, Spartalis E, Fentiman IS. The role of NSAIDs in breast cancer prevention and relapse: current evidence and future perspectives. Breast Care (Basel). 2016;11:339–44.

    Article  PubMed  Google Scholar 

  30. Kim H-J, Cho S-D, Kim J, Kim S-J, Choi C, Kim J-S, et al. Apoptotic effect of tolfenamic acid on MDA-MB-231 breast cancer cells and xenograft tumors. J Clin Biochem Nutr. 2013;53:21–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Razak NA, Abu N, Ho WY, Zamberi NR, Tan SW, Alitheen NB, et al. Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. Sci Rep Nat Publishing Group. 2019;9:1514.

    Google Scholar 

  32. Klose C, Straub I, Riehle M, Ranta F, Krautwurst D, Ullrich S, et al. Fenamates as TRP channel blockers: mefenamic acid selectively blocks TRPM3. Br J Pharmacol. 2011;162:1757–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Čeponytė U, Paškevičiūtė M, Petrikaitė V. Comparison of NSAIDs activity in COX-2 expressing and non-expressing 2D and 3D pancreatic cancer cell cultures. Cancer Manag Res. 2018;10:1543–51.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Elmaaty AA, Darwish KM, Chrouda A, Boseila AA, Tantawy MA, Elhady SS, et al. In Silico and in vitro studies for benzimidazole anthelmintics repurposing as VEGFR-2 antagonists: novel mebendazole-loaded mixed micelles with enhanced dissolution and anticancer activity. ACS Omega. 2022;7:875–99.

    Article  CAS  PubMed  Google Scholar 

  35. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993;26:283–91.

    Article  CAS  Google Scholar 

  36. Sterling T, Irwin JJ. ZINC 15 – ligand Discovery for everyone. J Chem Inf Model. 2015;55:2324–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ayers M, ChemSpider. The free chemical database. Reference reviews. 2012;26(7):45–6.

  38. Pence HE, Williams A. ChemSpider: an online chemical information resource. J Chem Educ. 2010;87:1123–4.

    Article  CAS  Google Scholar 

  39. Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J. BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 2016;44:D1045-1053.

    Article  CAS  PubMed  Google Scholar 

  40. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27:221–34.

    Article  PubMed  Google Scholar 

  41. Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M. Epik: a software program for pKaprediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des. 2007;21:681–91.

    Article  CAS  PubMed  Google Scholar 

  42. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–49.

    Article  CAS  PubMed  Google Scholar 

  43. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006;49:6177–96.

    Article  CAS  PubMed  Google Scholar 

  44. Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10:449–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Norinder U, Bergström CAS. Prediction of ADMET properties. ChemMedChem. 2006;1:920–37.

    Article  CAS  PubMed  Google Scholar 

  46. Cheng F, Li W, Liu G, Tang Y. In silico ADMET prediction: recent advances, current challenges and future trends. Curr Top Med Chem. 2013;13:1273–89.

    Article  CAS  PubMed  Google Scholar 

  47. Lipinski CA. Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv Drug Deliv Rev. 2016;101:34–41.

    Article  CAS  PubMed  Google Scholar 

  48. Tolosa L, Donato MT, Gómez-Lechón MJ. General cytotoxicity assessment by means of the MTT assay. Methods Mol Biol. 2015;1250:333–48.

    Article  CAS  PubMed  Google Scholar 

  49. Florea A-M, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel). 2011;3:1351–71.

    Article  CAS  PubMed  Google Scholar 

  50. Campos A, Clemente-Blanco A. Cell cycle and DNA repair regulation in the damage response: protein phosphatases take over the Reins. Int J Mol Sci. 2020;21:446 (Multidisciplinary Digit Publishing Inst).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kwon S, Yang W, Moon D, Kim KS. Comparison of cancer cell elasticity by cell type. J Cancer. 2020;11:5403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brylinski M. Aromatic interactions at the ligand-protein interface: implications for the development of docking scoring functions. Chem Biol Drug Des. 2018;91:380–90.

    Article  CAS  PubMed  Google Scholar 

  53. Labute P. The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area. J Comput Chem. 2008;29:1693–8.

    Article  CAS  PubMed  Google Scholar 

  54. Grob S. Molinspiration cheminformatics free web services. 2021. http://www.molinspiration.com.

  55. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44:235–49.

    Article  CAS  PubMed  Google Scholar 

  56. Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1:337–41.

    Article  CAS  PubMed  Google Scholar 

  57. Ashourpour M, Mostafavi Hosseini F, Amini M, Saeedian Moghadam E, Kazerouni F, Arman SY, et al. Pyrazole derivatives induce apoptosis via ROS Generation in the Triple negative breast Cancer cells, MDA-MB-468. Asian Pacific Journal of Cancer Prevention. Volume 22. West Asia Organization for Cancer Prevention (WAOCP),; 2021. pp. 2079–87. APOCP’s West Asia Chapter.

  58. Asghari N, Houshmand S, Rigi A, Mohammadzadeh V, Piri Dizaj M, Mousavian Hiagh ZS. PEGylated cationic nano-niosomes formulation containing herbal medicine curcumin for drug delivery to MCF-7 breast cancer cells. Eurasian Chem Commun. 2023;5:556–68 (Sami Publishing Co (SPC)).

    CAS  Google Scholar 

  59. Finetti F, Travelli C, Ercoli J, Colombo G, Buoso E, Trabalzini L. Prostaglandin E2 and cancer: insight into tumor progression and immunity. Biology (Basel). 2020;9(12):434. https://doi.org/10.3390/biology9120434.

  60. Greenhough A, Smartt HJM, Moore AE, Roberts HR, Williams AC, Paraskeva C, et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30:377–86.

    Article  CAS  PubMed  Google Scholar 

  61. Park JY, Pillinger MH, Abramson SB. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clin Immunol. 2006;119:229–40.

    Article  CAS  PubMed  Google Scholar 

  62. Sutphin RM, Connelly SF, Lee CM, Sankpal UT, Eslin D, Khan M, et al. Anti-leukemic response of a NSAID, tolfenamic acid. Target Oncol. 2014;9:135–44.

    Article  PubMed  Google Scholar 

  63. Altay A, Caglar S, Caglar B, Sahin ZS. Novel silver(I) complexes bearing mefenamic acid and pyridine derivatives: synthesis, chemical characterization and in vitro anticancer evaluation. Inorg Chim Acta. 2019;493:61–71.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Indian Council of Medical Research (ICMR), India to Ankita Sahu under the scheme ICMR-Research Associateship (Grant No. 3/1/3/PDF(14)2016-HRD).

Author information

Authors and Affiliations

Authors

Contributions

Experimental design, data collection and analysis were performed by Ankita Sahu. The first draft of the manuscript was written by Ankita Sahu. Babita Veer conceived and planned the synthesis work and In vitro studies for anticancer agents were performed by Sumit Kumar. Dibyabhaba Pradhan, Ram Singh, Khalid Raza, Moshahid A. Rizvi and Arun Kumar Jain reviewed and edited the paper. Saurabh Verma conceptualized and supervised work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saurabh Verma.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, A., Pradhan, D., Veer, B. et al. In silico screening, synthesis, characterization and biological evaluation of novel anticancer agents as potential COX-2 inhibitors. DARU J Pharm Sci 31, 119–133 (2023). https://doi.org/10.1007/s40199-023-00467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-023-00467-x

Keywords

Navigation