Skip to main content
Log in

Controlling CuCrZr alloy properties and microstructure rapidly by pulsed electric treatment (PET)

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pulsed electric treatment (PET) is a promising method for improving properties due to its clean, efficient, convenient, eco-friendly, and sustainable characteristics, thereby satisfying the target of carbon emission reduction and high-quality production. Previous studies have mainly focused on precipitate phases. In contrast, we place a primary emphasis on exploring the microstructural aspects to elucidate the reasons behind the performance enhancement of CuCrZr through PET. In this work, the properties and microstructure after PET in the cold-rolling CuCrZr alloy plate were investigated, and the mechanisms of PET were also revealed. The strength, strain, and electrical conductivity of CuCrZr alloy are increased by ~ 19.5%, ~ 186%, and ~ 73.1%, respectively. The improvement of the above properties is due to PET which can tailor the distribution of dislocation, achieve grain refinement, and promote the transformation of different textures. It is worth noting that dislocations move from the interior to around the grain boundary and gradually annihilate at high temperature with the increasing voltage of PET. At the same time, the current can enhance the < 111 > and < 101 > orientations and increase the volume fraction of {112} < 011 > texture and {112} < 110 > texture. Compared with traditional heat treatment, properties can be better improved under the proper processing parameters of PET. And the PET can induce the CuCrZr alloy to recrystallize at a low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in this paper and on a request from the corresponding author.

References

  1. Lu L, Shen Y, Chen X et al (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304:422–426. https://doi.org/10.1126/science.1092905

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Zhao Z, Zhang Y, Tian B et al (2019) Co effects on Cu–Ni–Si alloys microstructure and physical properties. J Alloy Compd 797:1327–1337. https://doi.org/10.1016/j.jallcom.2019.05.135

    Article  CAS  Google Scholar 

  3. Morozova A, Mishnev R, Belyakov A, Kaibyshev R (2018) Microstructure and properties of fine grained CuCrZr alloys after termo-mechanical treatments. Rev Adv Mater Sci 54:56–92. https://doi.org/10.1515/rams-2018-0020

    Article  CAS  Google Scholar 

  4. Yang H, Ma Z, Lei C et al (2020) High strength and high conductivity Cu alloys: a review. Sci China Technol Sci 63:2505–2517. https://doi.org/10.1007/s11431-020-1633-8

    Article  ADS  CAS  Google Scholar 

  5. Wu X, Wang R, Peng C et al (2020) Effects of cold rolling and low-temperature annealing on microstructure and mechanical properties of rapidly solidified Cu–3Ag-0.5Zr alloy. Mater Sci Eng A 773:138829. https://doi.org/10.1016/j.msea.2019.138829

    Article  CAS  Google Scholar 

  6. Zhang S, Li R, Kang H et al (2017) A high strength and high electrical conductivity CuCrZr alloy fabricated by cryorolling and intermediate aging treatment. Mater Sci Eng A 680:108–114. https://doi.org/10.1016/j.msea.2016.10.087

    Article  CAS  Google Scholar 

  7. Li J, Ding H, Li B et al (2021) Effect of Cr and Sn additions on microstructure, mechanical-electrical properties and softening resistance of Cu–Cr–Sn alloy. Mater Sci Eng A 802:140628. https://doi.org/10.1016/j.msea.2020.140628

    Article  CAS  Google Scholar 

  8. Wu X, Zhang J, Wang R et al (2022) Achieving high strength and high conductivity synergy through hierarchical precipitation stimulated structural heterogeneities in a Cu–Ag–Zr alloy. Mater Des 219:110777. https://doi.org/10.1016/j.matdes.2022.110777

    Article  CAS  Google Scholar 

  9. Li J, Ding H, Li B (2021) Study on the variation of properties of CuCrZr alloy by different rolling and aging sequence. Mater Sci Eng A 802:140413. https://doi.org/10.1016/j.msea.2020.140413

    Article  CAS  Google Scholar 

  10. Fu H, Xu S, Li W et al (2017) Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy. Mater Sci Eng, A 700:107–115. https://doi.org/10.1016/j.msea.2017.05.114

    Article  CAS  Google Scholar 

  11. Vijayanand VD, Mokhtarishirazabad M, Wang Y et al (2021) Estimating damage parameters of a CuCrZr alloy subjected to two varying heat treatments using small punch test. J Nucl Mater 557:153263. https://doi.org/10.1016/j.jnucmat.2021.153263

    Article  CAS  Google Scholar 

  12. Sun LX, Tao NR, Lu K (2015) A high strength and high electrical conductivity bulk CuCrZr alloy with nanotwins. Scr Mater 99:73–76. https://doi.org/10.1016/j.scriptamat.2014.11.032

    Article  ADS  CAS  Google Scholar 

  13. Chen J, Wang J, Xiao X et al (2019) Contribution of Zr to strength and grain refinement in CuCrZr alloy. Mater Sci Eng, A 756:464–473. https://doi.org/10.1016/j.msea.2019.04.053

    Article  CAS  Google Scholar 

  14. Bai Y, Zhao C, Zhang Y et al (2021) Additively manufactured CuCrZr alloy: microstructure, mechanical properties and machinability. Mater Sci Eng, A 819:141528. https://doi.org/10.1016/j.msea.2021.141528

    Article  CAS  Google Scholar 

  15. Li Q, Chen X, Zhang J et al (2022) Investigation of the effect of the thermo-mechanical processing of additively manufactured CoCrFeNiAl0.4 high-entropy alloy. Adv Eng Mater. https://doi.org/10.1002/adem.202101628

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cao D (2023) Investigation into surface-coated continuous flax fiber-reinforced natural sandwich composites via vacuum-assisted material extrusion. Prog Addit Manuf. https://doi.org/10.1007/s40964-023-00508-6

    Article  Google Scholar 

  17. Cao D, Bouzolin D, Lu H, Griffith DT (2023) Bending and shear improvements in 3D-printed core sandwich composites through modification of resin uptake in the skin/core interphase region. Compos B Eng 264:110912. https://doi.org/10.1016/j.compositesb.2023.110912

    Article  CAS  Google Scholar 

  18. Cao D (2023) Fusion joining of thermoplastic composites with a carbon fabric heating element modified by multiwalled carbon nanotube sheets. Int J Adv Manuf Technol 128:4443–4453. https://doi.org/10.1007/s00170-023-12202-6

    Article  Google Scholar 

  19. Barabash VR, Kalinin GM, Fabritsiev SA, Zinkle SJ (2011) Specification of CuCrZr alloy properties after various thermo-mechanical treatments and design allowables including neutron irradiation effects. J Nucl Mater 417:904–907. https://doi.org/10.1016/j.jnucmat.2010.12.158

    Article  ADS  CAS  Google Scholar 

  20. Ruszkiewicz BJ, Grimm T, Ragai I et al (2017) A Review of electrically-assisted manufacturing with emphasis on modeling and understanding of the electroplastic effect. J Manuf Sci Eng Doi 10(1115/1):4036716

    Google Scholar 

  21. Wu C, Zhou Y, Liu B (2022) Experimental and simulated investigation of the deformation behavior and microstructural evolution of Ti6554 titanium alloy during an electropulsing-assisted microtension process. Mater Sci Eng: A 838:142745. https://doi.org/10.1016/j.msea.2022.142745

    Article  CAS  Google Scholar 

  22. Sabbaghian M, Mahmudi R, Shin KS (2019) Effect of texture and twinning on mechanical properties and corrosion behavior of an extruded biodegradable Mg–4Zn alloy. J Magnesium Alloys 7:707–716. https://doi.org/10.1016/j.jma.2019.11.001

    Article  CAS  Google Scholar 

  23. Li Q, Chen X, Chen X et al (2022) Microstructure evolution of additively manufactured CoCrFeNiAl0.4 high-entropy alloy under thermo-mechanical processing. J Market Res 16:442–450. https://doi.org/10.1016/j.jmrt.2021.12.007

    Article  CAS  Google Scholar 

  24. Chen XP, Sun HF, Chen D et al (2016) On recrystallization texture and magnetic property of Cu-Ni alloys. Mater Charact 121:149–156. https://doi.org/10.1016/j.matchar.2016.10.006

    Article  CAS  Google Scholar 

  25. Liao C, Huang J, Xue L et al (2023) Another reason for plasticity enhancement of cold-deformed aluminium alloy induced by electric pulse treatment. Mater Today Commun 34:104969. https://doi.org/10.1016/j.mtcomm.2022.104969

    Article  CAS  Google Scholar 

  26. Liu P, Liu X, Jiang X et al (2023) Evolution of phase interface microstructure and its effects on stress rupture property of a 4th generation nickel-based single crystal superalloy after thermal exposure. Mater Sci Eng, A 865:144640. https://doi.org/10.1016/j.msea.2023.144640

    Article  CAS  Google Scholar 

  27. Cui X, Zhang S, Wang C et al (2020) Effects of stress-relief heat treatment on the microstructure and fatigue property of a laser additive manufactured 12CrNi2 low alloy steel. Mater Sci Eng, A 791:139738. https://doi.org/10.1016/j.msea.2020.139738

    Article  CAS  Google Scholar 

  28. Li X, Zhang J, Li C et al (2024) Elucidating the mechanical response and microstructure evolution of the constituent layers in gradient-structured Cu alloys. J Market Res 28:316–326. https://doi.org/10.1016/j.jmrt.2023.11.263

    Article  CAS  Google Scholar 

  29. Liu Z, Zhang C, Yan J et al (2024) Re-dissolution behavior of secondary phases and mechanical response of CNT/2024Al composites. Mater Charact 207:113543. https://doi.org/10.1016/j.matchar.2023.113543

    Article  CAS  Google Scholar 

  30. Zhou Y, Zeng X, Yang Z, Wu H (2018) Effect of crystallographic textures on thermal anisotropy of selective laser melted Cu-2.4Ni-0.7Si alloy. J Alloys Compd 743:258–261. https://doi.org/10.1016/j.jallcom.2018.01.335

    Article  CAS  Google Scholar 

  31. Li M, Shen Y, Luo K et al (2023) Harnessing dislocation motion using an electric field. Nat Mater. https://doi.org/10.1038/s41563-023-01572-7

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang N, Chen Y, Wu G et al (2022) Non-equivalence contribution of geometrically necessary dislocation and statistically stored dislocation in work-hardened metals. Mater Sci Eng, A 836:142728. https://doi.org/10.1016/j.msea.2022.142728

    Article  CAS  Google Scholar 

  33. Muránsky O, Balogh L, Tran M et al (2019) On the measurement of dislocations and dislocation substructures using EBSD and HRSD techniques. Acta Mater 175:297–313. https://doi.org/10.1016/j.actamat.2019.05.036

    Article  ADS  CAS  Google Scholar 

  34. Liu XL, Xue QQ, Wang W et al (2019) Back-stress-induced strengthening and strain hardening in dual-phase steel. Materialia 7:100376. https://doi.org/10.1016/j.mtla.2019.100376

    Article  CAS  Google Scholar 

  35. Li D, Wagoner RH (2021) The nature of yielding and anelasticity in metals. Acta Mater 206:116625. https://doi.org/10.1016/j.actamat.2021.116625

    Article  CAS  Google Scholar 

  36. Akhtar M, Khajuria A, Bedi R (2020) Effect of re-normalizing and re-tempering on inter-critical heat affected Zone(S) of P91B Steel. In: Sharma VS, Dixit US, Sørby K et al (eds) Manufacturing engineering. Springer, Singapore, pp 255–270

    Chapter  Google Scholar 

  37. Khajuria A, Shiva S, Misra A (2023) The carbon content effect on hot-rolled C-Mn micro-alloyed E410 structural steel. Vacuum 212:112042. https://doi.org/10.1016/j.vacuum.2023.112042

    Article  ADS  CAS  Google Scholar 

  38. Khajuria A, Akhtar M, Bedi R et al (2020) Microstructural investigations on simulated intercritical heat-affected zone of boron modified P91-steel. Mater Sci Technol 36:1407–1418. https://doi.org/10.1080/02670836.2020.1784543

    Article  ADS  CAS  Google Scholar 

  39. Akhtar M, Khajuria A (2023) The synergistic effects of boron and impression creep testing during paced controlling of temperature for P91 steels. Adv Eng Mater 25:2300053. https://doi.org/10.1002/adem.202300053

    Article  CAS  Google Scholar 

  40. Bhattacharjee PP, Sathiaraj GD, Zaid M et al (2014) Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J Alloys Compd 587:544–552. https://doi.org/10.1016/j.jallcom.2013.10.237

    Article  CAS  Google Scholar 

  41. Sathiaraj GD, Ahmed MZ, Bhattacharjee PP (2016) Microstructure and texture of heavily cold-rolled and annealed fcc equiatomic medium to high entropy alloys. J Alloys Compd 664:109–119. https://doi.org/10.1016/j.jallcom.2015.12.172

    Article  CAS  Google Scholar 

  42. Kocks UF, Tomé CN, Wenk H-R (2000) Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge University Press

    Google Scholar 

  43. Wang P, Qi JF, Chen ZW et al (2021) Microstructure and mechanical properties of novel high-entropy alloy particle reinforced aluminum matrix composites fabricated by selective laser melting. J Alloy Compd 868:159197. https://doi.org/10.1016/j.jallcom.2021.159197

    Article  CAS  Google Scholar 

  44. Zhang P, Jie J, Gao Y et al (2015) Preparation and properties of TiB2 particles reinforced Cu–Cr matrix composite. Mater Sci Eng, A 642:398–405. https://doi.org/10.1016/j.msea.2015.07.021

    Article  CAS  Google Scholar 

  45. Bao W, Chen J, Yang X et al (2022) Improved strength and conductivity of metallic-glass-reinforced nanocrystalline CuCrZr alloy. Mater Des 214:110420. https://doi.org/10.1016/j.matdes.2022.110420

    Article  CAS  Google Scholar 

  46. Hansen N (2004) Hall-Petch relation and boundary strengthening. Scr Mater 51:801–806. https://doi.org/10.1016/j.scriptamat.2004.06.002

    Article  CAS  Google Scholar 

  47. Li M, Hu P, Zhang Y, Chang Y (2021) Enhancing performance of the CuCrZrTiV alloys through increasing recrystallization resistance and two-step thermomechanical treatments. J Nucl Mater 543:152482. https://doi.org/10.1016/j.jnucmat.2020.152482

    Article  CAS  Google Scholar 

  48. Jha K, Kumar S, Nachiket K et al (2018) Friction stir welding (FSW) of aged CuCrZr alloy plates. Metall and Mater Trans A 49:223–234. https://doi.org/10.1007/s11661-017-4413-2

    Article  ADS  CAS  Google Scholar 

  49. Li J, Ding H, Li B (2021) Study on the variation of properties of CuCrZr alloy by different rolling and aging sequence. Mater Sci Eng, A 802:140413. https://doi.org/10.1016/j.msea.2020.140413

    Article  CAS  Google Scholar 

  50. Bertin N, Tomé CN, Beyerlein IJ et al (2014) On the strength of dislocation interactions and their effect on latent hardening in pure Magnesium. Int J Plast 62:72–92. https://doi.org/10.1016/j.ijplas.2014.06.010

    Article  CAS  Google Scholar 

  51. Liang N, Liu J, Lin S et al (2018) A multiscale architectured CuCrZr alloy with high strength, electrical conductivity and thermal stability. J Alloys Compd 735:1389–1394. https://doi.org/10.1016/j.jallcom.2017.11.309

    Article  CAS  Google Scholar 

  52. Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scripta Mater 47:893–899. https://doi.org/10.1016/S1359-6462(02)00282-8

    Article  CAS  Google Scholar 

  53. Zhao LY, Yan H, Chen RS, Han E-H (2020) Oriented nucleation causing unusual texture transition during static recrystallization annealing in cold-rolled Mg–Zn–Gd alloys. Scr Mater 188:200–205. https://doi.org/10.1016/j.scriptamat.2020.07.037

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Natural Science Foundation of Sichuan Province 2022NSFC0336.

Author information

Authors and Affiliations

Authors

Contributions

QL was involved in investigation, methodology, and writing—original draft. MW helped with data curation, formal analysis, writing—review and editing, and funding acquisition. LX participated in validation, formal analysis, and investigation. JH, CW, and XL were involved in validation and data curation. ZH was involved in data curation and investigation. GX helped in data curation, writing—review and editing, and visualization. YY helped with data curation, formal analysis, and supervision.

Corresponding authors

Correspondence to Mingxia Wu or Gaolei Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wu, M., Xue, L. et al. Controlling CuCrZr alloy properties and microstructure rapidly by pulsed electric treatment (PET). J Mater Sci 59, 4680–4699 (2024). https://doi.org/10.1007/s10853-024-09516-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09516-5

Navigation