Skip to main content
Log in

Effects of Stabilization Heat Treatment on Microstructure and Mechanical Properties of Si-Bearing 15Cr–9Ni–Nb Austenitic Stainless Steel Weld Metal

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Two 15Cr–9Ni–Nb austenitic stainless steel weld metals with 2.5% Si and 3.5% Si (namely 2.5Si and 3.5Si samples, respectively) were designed and prepared through tungsten inert gas (TIG) welding and then hold at 800 °C or 900 °C for 3 h for stabilization. The microstructure and mechanical properties were investigated both for the as-welded and after-stabilization heat treatment (SHT) weld metals. There are 3.0–4.0% martensite and 2.5–3.5% δ ferrite in the 2.5Si as-welded weld metal and 6.0–7.0% δ ferrite in the 3.5Si as-welded weld metal. After SHT, a large amount of martensite formed in the 2.5Si weld metal, and δ → γ transition occurred during the SHT process both for the 2.5Si and 3.5Si weld metals. There were a large amount of coarse NbC and few nanoscale NbC in the as-welded weld metal. During the SHT, a large amount of nanoscale NbC formed in the matrix, while a large number of G phases formed at the austenite grain boundaries and the δ/γ interfaces. The decrease in solid solution C and δ ferrite content led to the decline of the yield strength of the weld metal after SHT. The martensite formed in 2.5Si weld metal after SHT had less effect on strength because of its low carbon content. The G phases formed during the SHT reduced the impact energy of the weld metal because it promoted the intergranular fracture, while the δ → γ transition reduced the amount of the δ/γ interfaces and avoided the intergranular fracture, which was beneficial for the impact toughness of the weld metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.L. Séran, M.L. Flem, Structural Materials for Generation IV Nuclear Reactors (Woodhead Publishing, England, 2017), pp.285–328

    Book  Google Scholar 

  2. A.L. Johnson, D. Parsons, J. Manzerova, D.L. Perry, K. Dan, B. Hosterman, J.W. Farley, J. Nucl. Mater. 328, 88 (2004)

    Article  CAS  Google Scholar 

  3. C. Schroer, O. Wedemeyer, J. Novotny, A. Skrypnik, J. Konys, Corros. Sci. 84, 113 (2014)

    Article  CAS  Google Scholar 

  4. Y. Kurata, H. Yokota, T. Suzuki, J. Nucl. Mater. 424, 237 (2012)

    Article  CAS  Google Scholar 

  5. V. Tsisar, C. Schroer, O. Wedemeyer, A. Skrypnik, J. Konys, J. Nucl. Mater. (2014).

  6. Y. Kurata, S. Saito, Mater. Trans. 50, 2410 (2009)

    Article  CAS  Google Scholar 

  7. I.G. Vladimir, I.S. Viktor, I.O. Mihail, S.C. Tatyana, Mater. Sci Power Eng. 91, 130 (2015)

    Google Scholar 

  8. J.C. Lippold, D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels (Wiley, New Jersey, 2005), pp.140–160

    Google Scholar 

  9. R.A. Farrar, R.G. Thomas, J. Mater. Sci. 18, 3461 (1983)

    Article  CAS  Google Scholar 

  10. R.A. Farrar, J. Mater. Sci. 22, 363 (1987)

    Article  CAS  Google Scholar 

  11. R.A. Farrar, J. Mater. Sci. 20, 4215 (1985)

    Article  CAS  Google Scholar 

  12. J.J. Smith, R.A. Farrar, J. Mater. Sci. 26, 5025 (1991)

    Article  CAS  Google Scholar 

  13. L. Zhao, S. Wei, D. Gao, S. Lu, Acta Metall. Sin.-Engl. Lett. 34, 11 (2021)

    Google Scholar 

  14. A.B. Korostelev, S.V. Evropin, A.G. Derzhavin, I.V. Vershinin, A.N. Romanov, At. Energy 129, 1 (2021)

    Article  Google Scholar 

  15. L. Cinotti, C.F. Smith, H. Sekimoto, L. Mansani, M. Reale, J.J. Sienicki, J. Nucl. Mater. 415, 245 (2011)

    Article  CAS  Google Scholar 

  16. A. Nassour, W.W. Bose, D. Spinelli, J. Mater. Eng. Perform. 10, 693 (2001)

    Article  CAS  Google Scholar 

  17. K. Guan, X. Xu, X. Hong, Z. Wang, Nucl. Eng. Des. 235, 2485 (2005)

    Article  CAS  Google Scholar 

  18. G. Eichelman, F.C. Hull, Trans. Am. Soc. Met. 45, 77 (1953)

    Google Scholar 

  19. B. Arh, F. Tehovnik, F. Vode, Metals 11, 935 (2021)

    Article  CAS  Google Scholar 

  20. B. Leone, H.W. Kerr, Weld. J. 61, 1 (1982)

    Google Scholar 

  21. A.F. Padilha, G. Schanz, K. Anderko, J. Nucl. Mater. 105, 77 (1982)

    Article  CAS  Google Scholar 

  22. A.S. Grot, J.E. Spruiell, Metall. Trans. A 6, 2023 (1975)

    Article  Google Scholar 

  23. J.M. Leitnaker, J. Bentley, Metall. Trans. A 8, 1605 (1977)

    Article  Google Scholar 

  24. A.R. Jones, P.R. Howell, B. Ralph, J. Mater. Sci. 11, 1600 (1976)

    Article  CAS  Google Scholar 

  25. H. Uno, A. Kimura, T. Misawa, Sumitomo Search (Japan) 54, 48 (1993)

    Google Scholar 

  26. H.W. Cao, X.H. Luo, G.F. Zhan, S. Liu, Acta Metall. Sin.-Engl. Lett. 31, 81 (2018)

    Google Scholar 

  27. R.A.P. Ibaez, G. Soares, L. Almeida, I.L. May, Mater. Charact. 30, 243 (1993)

    Article  Google Scholar 

  28. N. Vaché, P. Steyer, C. Duret-Thual, M. Perez, Materialia 9, 100593 (2020)

    Article  Google Scholar 

  29. D.J. Powell, R. Pilkington, D.A. Miller, Acta Metall. 36, 713 (1988)

    Article  CAS  Google Scholar 

  30. X.F. Guo, Y.Y. Ni, J.M. Gong, L.Y. Geng, J.Q. Tang, Y. Jiang, X.K. Jia, X.Y. Yang, Acta Metall. Sin.-Engl. Lett. 30, 11 (2017)

    Google Scholar 

  31. D.M. Knowles, C.W. Thomas, D.J. Keen, Q.Z. Chen, Int. J. Press. Vessel. Pip. 81, 499 (2004)

    Article  CAS  Google Scholar 

  32. D. Hauser, J.E. Vanecho, Weld J. 50, 61 (1982)

    CAS  Google Scholar 

  33. J. Vojvodic-Tuma, B. Sustarsic, F. Vodopivec, Nucl. Eng. Des. 238, 1511 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the China Institute of Atomic Energy (E141L803J1) and the innovation project of Shenyang National Laboratory for Materials Science (SYNL-2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanping Lu.

Ethics declarations

Conflict of interest

The authors state that there are no conflict of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wu, D., Li, D. et al. Effects of Stabilization Heat Treatment on Microstructure and Mechanical Properties of Si-Bearing 15Cr–9Ni–Nb Austenitic Stainless Steel Weld Metal. Acta Metall. Sin. (Engl. Lett.) 36, 637–649 (2023). https://doi.org/10.1007/s40195-022-01497-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-022-01497-1

Keywords

Navigation