Skip to main content
Log in

Effect of Grain Size and Dislocation Density on the Work Hardening Behavior of SS 304

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present investigation, grain size and dislocation density in SS 304 metastable austenitic stainless steel were varied by annealing the as-received steel at 1025 °C for 120 and 360 min. Effect of dislocation density and grain size on the work hardening behavior, evolution of deformation-induced martensite, and kinetics of deformation-induced transformation has been systematically studied with x-ray diffraction and microscopic examination of steels when subjected to the interrupted tensile deformation. As-rolled stainless steels exhibited rapid work hardening at low strains due to high initial dislocation density, while annealed steel rapidly work-hardened at higher strains due to the formation of large fraction of deformation-induced martensite and generation of large number of geometrically necessary dislocations. Differences in the initial dislocation density influenced the rate of deformation-induced transformation. Further, in this study, from first principles, it has been found that due to relatively high apparent stacking fault energy, in as-rolled fine grain stainless steels, deformation of austenite primarily takes place with the formation of twins. In contrast, annealed coarse-grained stainless steels with low apparent stacking fault energy, deformation-induced transformation of austenite into \(\epsilon \)-martensite is the dominant deformation path, rendering annealed steel to undergo deformation-induced transformation rapidly as compared to the as-received stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

Data will be made available on a reasonable request.

References

  1. H. Zhang, C. Li, Y. Shi, G. Yao, and Y. Zhang, Fatigue and Tensile Deformation Behaviors of Laser Powder Bed Fused 304L Austenitic Stainless Steel, Mater. Sci. Eng. A, 2022, 849, 143503.

    Article  CAS  Google Scholar 

  2. M. Soleimani, A. Kalhor, and H. Mirzadeh, Transformation-Induced Plasticity (TRIP) in Advanced Steels: A Review, Mater. Sci. Eng. A, 2020, 795, 140023.

    Article  CAS  Google Scholar 

  3. M.J. Sohrabi, M. Naghizadeh, and H. Mirzadeh, Deformation-Induced Martensite in Austenitic Stainless Steels: A Review, Arch. Civ. Mech. Eng.neering, 2020, 20, p 1–24.

    Google Scholar 

  4. W. Bleck, X. Guo, and Y. Ma, The TRIP Effect and Its Application in Cold Formable Sheet Steels, Steel Res. Int., 2017, 88(10), p 1700218.

    Article  Google Scholar 

  5. Q. Lai, H. Yang, Y. Wei, H. Zhou, L. Xiao, H. Ying, S. Lan, Z. You, Z. Kou, and T. Feng, Transformation Plasticity in High Strength, Ductile Ultrafine-Grained FeMn Alloy Processed by Heavy Ausforming, Int. J. Plast., 2022, 148, 103151.

    Article  CAS  Google Scholar 

  6. M.J. Sohrabi, H. Mirzadeh, S. Sadeghpour, and R. Mahmudi, Explaining the Drop of Work-Hardening Rate and Limitation of Transformation-Induced Plasticity Effect in Metastable Stainless Steels during Tensile Deformation, Scr. Mater., 2023, 231, 115465.

    Article  CAS  Google Scholar 

  7. K. Spencer, J.D. Embury, K.T. Conlon, M. Véron, and Y. Bréchet, Strengthening via the Formation of Strain-Induced Martensite in Stainless Steels, Mater. Sci. Eng. Ag. A, 2004, 387, p 873–881.

    Article  Google Scholar 

  8. P.M. Ahmedabadi, V. Kain, and A. Agrawal, Modelling Kinetics of Strain-Induced Martensite Transformation during Plastic Deformation of Austenitic Stainless Steel, Mater. Des., 2016, 109, p 466–475.

    Article  CAS  Google Scholar 

  9. G. Fargas, J.J. Roa, and A. Mateo, Effect of Shot Peening on Metastable Austenitic Stainless Steels, Mater. Sci. Eng. A, 2015, 641, p 290–296.

    Article  CAS  Google Scholar 

  10. S. Kheiri, H. Mirzadeh, and M. Naghizadeh, Tailoring the Microstructure and Mechanical Properties of AISI 316L Austenitic Stainless Steel via Cold Rolling and Reversion Annealing, Mater. Sci. Eng. A, 2019, 759, p 90–96.

    Article  CAS  Google Scholar 

  11. Y. He, J. Zhang, Y. Wang, Y. Wang, and T. Wang, The Expansion Behavior Caused by Deformation-Induced Martensite to Austenite Transformation in Heavily Cold-Rolled Metastable Austenitic Stainless Steel, Mater. Sci. Eng. A, 2019, 739, p 343–347.

    Article  CAS  Google Scholar 

  12. A. Järvenpää, M. Jaskari, A. Kisko, and P. Karjalainen, Processing and Properties of Reversion-Treated Austenitic Stainless Steels, Metals (Basel), 2020, 10(2), p 281.

    Article  Google Scholar 

  13. T. Shintani and Y. Murata, Evaluation of the Dislocation Density and Dislocation Character in Cold Rolled Type 304 Steel Determined by Profile Analysis of X-Ray Diffraction, Acta Mater., 2011, 59(11), p 4314–4322.

    Article  CAS  Google Scholar 

  14. J. Liu and D. Kaoumi, Use of In-Situ TEM to Characterize the Deformation-Induced Martensitic Transformation in 304 Stainless Steel at Cryogenic Temperature, Mater Charact, 2018, 136, p 331–336.

    Article  CAS  Google Scholar 

  15. T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, S. Koike, and M. Ichihara, Plastic Deformation and Martensitic Transformation in an Iron-Base Alloy, Scr. Metall., 1976, 10(4), p 353–358.

    Article  CAS  Google Scholar 

  16. H.C. Shin, T.K. Ha, and Y.W. Chang, Kinetics of Deformation Induced Martensitic Transformation in a 304 Stainless Steel, Scr. Mater., 2001, 45(7), p 823–829.

    Article  CAS  Google Scholar 

  17. T. Kikuchi and S. Kajiwara, HVEM in Situ Observation of Isothermal Martensitic Transformation under Applied Stress, Trans. Jpn. Inst. Met., 1985, 26(12), p 861–868.

    Article  CAS  Google Scholar 

  18. X.F. Fang and W. Dahl, Strain Hardening and Transformation Mechanism of Deformation-Induced Martensite Transformation in Metastable Austenitic Stainless Steels, Mater. Sci. Eng. A, 1991, 141(2), p 189–198.

    Article  Google Scholar 

  19. J. Liu, C. Chen, Q. Feng, X. Fang, H. Wang, F. Liu, J. Lu, and D. Raabe, Dislocation Activities at the Martensite Phase Transformation Interface in Metastable Austenitic Stainless Steel: An in-Situ TEM Study, Mater. Sci. Eng. A, 2017, 703, p 236–243.

    Article  CAS  Google Scholar 

  20. S. Chatterjee, H.-S. Wang, J.R. Yang, and H. Bhadeshia, Mechanical Stabilisation of Austenite, Mater. Sci. Technol., 2006, 22(6), p 641–644.

    Article  CAS  Google Scholar 

  21. D. Qi-Xun, W. An-Dong, C. Xiao-Nong, and L. Xin-Min, Stacking Fault Energy of Cryogenic Austenitic Steels, Chin. Phys., 2002, 11(6), p 596.

    Article  Google Scholar 

  22. M.R. da Rocha and C.A.S. de Oliveira, Evaluation of the Martensitic Transformations in Austenitic Stainless Steels, Mater. Sci. Eng. A, 2009, 517(1–2), p 281–285.

    Article  Google Scholar 

  23. K. Nohara, Y. Ono, and N. Ohashi, Composition and Grain Size Dependencies of Strain-Induced Martensitic Transformation in Metastable Austenitic Stainless Steels, Tetsu-to-Hagané, 1977, 63(5), p 772–782.

    Article  CAS  Google Scholar 

  24. D.C. Ludwigson, Modified Stress–Strain Relation for FCC Metals and Alloys, Metall. Trans., 1971, 2(10), p 2825–2828.

    Article  CAS  Google Scholar 

  25. E.-96 ASTM, Standard Test Methods for Determining Average Grain Size, ASTM International: West Conshohocken, PA, USA, 2004.

  26. R. Abbaschian and R.E. Reed-Hill, Physical Metallurgy Principles-SI Version, Cengage Learning, Stamford, USA, 2009.

    Google Scholar 

  27. P. Tiwari and A. Varshney, A Review on Measurement Techniques of Deformation-Induced Transformation Kinetics in Transformation-Induced Plasticity and Transformation-Induced Plasticity-Assisted Steels, Steel Res. Int., 2023, 95(1), p 2300341.

    Article  Google Scholar 

  28. W.A. Rachinger, A Correction for the Α1 Α2 Doublet in the Measurement of Widths of X-Ray Diffraction Lines, J. Sci. Instrum., 1948, 25(7), p 254.

    Article  Google Scholar 

  29. T.H. De Keijser, J.I. Langford, E.J. Mittemeijer, and A.B.P. Vogels, Use of the Voigt Function in a Single-Line Method for the Analysis of X-Ray Diffraction Line Broadening, J. Appl. Crystallogr., 1982, 15(3), p 308–314.

    Article  Google Scholar 

  30. T. Narutani, Effect of Deformation-Induced Martensitic Transformation on the Plastic Behavior of Metastable Austenitic Stainless Steel, Mater. Trans. JIM, 1989, 30(1), p 33–45.

    Article  CAS  Google Scholar 

  31. M. Naghizadeh and H. Mirzadeh, Effects of Grain Size on Mechanical Properties and Work-hardening Behavior of AISI 304 Austenitic Stainless Steel, Steel Res. Int., 2019, 90(10), p 1900153.

    Article  Google Scholar 

  32. M.J. Sohrabi, H. Mirzadeh, S. Sadeghpour, and R. Mahmudi, Grain Size Dependent Mechanical Behavior and TRIP Effect in a Metastable Austenitic Stainless Steel, Int. J. Plast., 2023, 160, 103502.

    Article  CAS  Google Scholar 

  33. S. Rajasekhara, P.J. Ferreira, L.P. Karjalainen, and A. Kyröläinen, Hall-Petch Behavior in Ultra-Fine-Grained AISI 301LN Stainless Steel, Metall. Mater. Trans. A, 2007, 38, p 1202–1210.

    Article  Google Scholar 

  34. G.E. Dieter and D. Bacon, Mechanical Metallurgy, McGraw-hill, New York, 1976.

    Google Scholar 

  35. D. Hull and D.J. Bacon, Introduction to Dislocations, Elsevier, Burlington, USA, 2011.

    Google Scholar 

  36. J. Talonen and H. Hänninen, Formation of Shear Bands and Strain-Induced Martensite during Plastic Deformation of Metastable Austenitic Stainless Steels, Acta Mater., 2007, 55(18), p 6108–6118.

    Article  CAS  Google Scholar 

  37. A. Heinz and P. Neumann, Crack Initiation during High Cycle Fatigue of an Austenitic Steel, Acta Metall. Mater., 1990, 38(10), p 1933–1940.

    Article  CAS  Google Scholar 

  38. C. Blochwitz and W. Tirschler, Influence of Texture on Twin Boundary Cracks in Fatigued Austenitic Stainless Steel, Mater. Sci. Eng. A, 2003, 339(1–2), p 318–327.

    Article  Google Scholar 

  39. O. Grässel and G. Frommeyer, Effect of Martensitic Phase Transformation and Deformation Twinning on Mechanical Properties of Fe–Mn–Si–AI Steels, Mater. Sci. Technol., 1998, 14(12), p 1213–1217.

    Article  Google Scholar 

  40. G.B. Olson and M. Cohen, Kinetics of Strain-Induced Martensitic Nucleation, Metall. Trans. A, 1975, 6, p 791–795.

    Article  Google Scholar 

  41. A. Jain and A. Varshney, A Critical Review on Deformation-Induced Transformation Kinetics of Austenitic Stainless Steels, Mater. Sci. Technol., 2024, 40(2), p 75–106. https://doi.org/10.1177/02670836231212618

    Article  Google Scholar 

  42. A. Kundu and D.P. Field, Influence of Microstructural Heterogeneity and Plastic Strain on Geometrically Necessary Dislocation Structure Evolution in Single-Phase and Two-Phase Alloys, Mater Charact, 2020, 170, 110690.

    Article  CAS  Google Scholar 

  43. S. Furukane and S. Torizuka, Effect of Grain Size and Dislocation Density on Strain-Induced Martensitic Transformation in Austenitic Stainless Steels, Tetsu To Hagane (Online), 2019, 105(8), p 827–836.

    Article  Google Scholar 

  44. B.L. Ennis, E. Jimenez-Melero, E.H. Atzema, M. Krugla, M.A. Azeem, D. Rowley, D. Daisenberger, D.N. Hanlon, and P.D. Lee, Metastable Austenite Driven Work-Hardening Behaviour in a TRIP-Assisted Dual Phase Steel, Int. J. Plast., 2017, 88, p 126–139.

    Article  CAS  Google Scholar 

  45. Y.K. Lee, J.E. Jin, and Y.Q. Ma, Transformation-Induced Extraordinary Ductility in an Ultrafine-Grained Alloy with Nanosized Precipitates, Scr. Mater., 2007, 57(8), p 707–710.

    Article  CAS  Google Scholar 

  46. A. Kisko, R.D.K. Misra, J. Talonen, and L.P. Karjalainen, The Influence of Grain Size on the Strain-Induced Martensite Formation in Tensile Straining of an Austenitic 15Cr-9Mn-Ni-Cu Stainless Steel, Mater. Sci. Eng. A, 2013, 578, p 408–416.

    Article  CAS  Google Scholar 

  47. R.G. Stringfellow, D.M. Parks, and G.B. Olson, A Constitutive Model for Transformation Plasticity Accompanying Strain-Induced Martensitic Transformations in Metastable Austenitic Steels, Acta Metall. Mater., 1992, 40(7), p 1703–1716.

    Article  CAS  Google Scholar 

  48. M.F. Ashby, The Deformation of Plastically Non-Homogeneous Materials, Philos. Mag. A J. Theor. Exp. Appl. Phys., 1970, 21(170), p 399–424.

    CAS  Google Scholar 

  49. Y.-K. Lee and C. Choi, Driving Force for Γ→ ε Martensitic Transformation and Stacking Fault Energy of γ in Fe-Mn Binary System, Metall. Mater. Trans. A, 2000, 31, p 355–360.

    Article  Google Scholar 

  50. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels, Metall. Mater. Trans. A, 2009, 40, p 3076–3090.

    Article  Google Scholar 

  51. M. Huang, L. Wang, C. Wang, A. Mogucheva, and W. Xu, Characterization of Deformation-Induced Martensite with Various AGSs upon Charpy Impact Loading and Correlation with Transformation Mechanisms, Mater Charact, 2022, 184, 111704.

    Article  CAS  Google Scholar 

  52. D. Geissler, J. Freudenberger, A. Kauffmann, S. Martin, and D. Rafaja, Assessment of the Thermodynamic Dimension of the Stacking Fault Energy, Philos. Mag., 2014, 94(26), p 2967–2979.

    Article  CAS  Google Scholar 

  53. D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay, and J.E. Wittig, The Influence of Manganese Content on the Stacking Fault and Austenite/ε-Martensite Interfacial Energies in Fe–Mn–(Al–Si) Steels Investigated by Experiment and Theory, Acta Mater., 2014, 68, p 238–253.

    Article  CAS  Google Scholar 

  54. E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Understanding Martensite and Twin Formation in Austenitic Steels: A Model Describing TRIP and TWIP Effects, Acta Mater., 2017, 128, p 120–134.

    Article  CAS  Google Scholar 

  55. J.S. Aristeidakis and G.N. Haidemenopoulos, Constitutive and Transformation Kinetics Modeling of ε-, Α′-Martensite and Mechanical Twinning in Steels Containing Austenite, Acta Mater., 2022, 228, 117757.

    Article  CAS  Google Scholar 

  56. Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, and L. Zuo, Twinning and Martensite in a 304 Austenitic Stainless Steel, Mater. Sci. Eng. A, 2012, 552, p 514–522.

    Article  CAS  Google Scholar 

  57. P. Peralta, L. Llanes, J. Bassani, and C. Laird, Deformation from Twin-Boundary Stresses and the Role of Texture: Application to Fatigue, Philos. Mag. A, 1994, 70(1), p 219–232.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Varshney.

Ethics declarations

Conflict of interest

It is certified that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Varshney, A. Effect of Grain Size and Dislocation Density on the Work Hardening Behavior of SS 304. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09358-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09358-x

Keywords

Navigation