Skip to main content

Advertisement

Log in

Influence of Cold-Rolling Reduction on Microstructure and Tensile Properties of Nuclear FeCrAl Alloy with Low Cr and Nb Contents

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

FeCrAl alloy is one of the most promising candidates as an accident-tolerant fuel (ATF) cladding material. Herein, the influence of cold-rolling (CR) reduction on microstructure and tensile properties of the as-annealed FeCrAl alloys, with low Cr and Nb contents, is systematically examined. With the increase in CR reduction, the grain size of FeCrAl alloy is obviously refined after annealing because the increase in stored deformation energy leads to enhanced recrystallization. However, the large CR reductions result in a severe mixed-grain microstructure, significantly reducing the uniform deformability of the FeCrAl alloy. The dislocation density of the as-annealed FeCrAl alloy decreases with the increase in CR reduction, except for the excessive CR reduction of 50%. Moreover, the Laves phases are crushed and dissolved during CR and annealing, as well as large amounts of refined Laves phases are found after large CR reductions. The pinning effect of the Laves phases can significantly improve the strength of FeCrAl alloy. Accordingly, the strengthening mechanisms of FeCrAl alloy consist of fine-grain strengthening, dislocation strengthening and precipitation strengthening. Finally, the FeCrAl alloy, with a CR reduction of 30%, achieves optimal tensile properties. This study can provide theoretical guidance for the industrial production of the FeCrAl alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.B. Rebak, Mater. Trans. 2E, 197 (2015)

    Google Scholar 

  2. Z. Yang, J. Pan, Z.X. Wang, Y.M. Wu, G.D. Jia, J. Li, X.S. Xiao, Corros. Sci. 172, 108728 (2020)

    Article  CAS  Google Scholar 

  3. G. Jiang, D. Xu, P. Feng, S. Guo, J. Yang, Y. Li, J. Alloy. Compd. 869, 159235 (2021)

    Article  CAS  Google Scholar 

  4. Y.R. Lin, A. Bhattacharya, D. Chen, J.J. Kai, J. Henry, S.J. Zinkle, Acta Mater. 207, 116660 (2021)

    Article  CAS  Google Scholar 

  5. H.Y. Sun, H. Wang, X.J. He, F. Wang, X.G. An, Z.G. Wang, Mat. Sci. Eng. A 802, 140688 (2021)

    Article  CAS  Google Scholar 

  6. P. Dömstedt, M. Lundberg, P. Szakálos, J. Nucl. Mater. 531, 152022 (2020)

    Article  Google Scholar 

  7. Y. Qiao, P. Wang, W. Qi, S. Du, Z. Liu, F. Meng, X. Zhang, K. Wang, Q. Li, Z. Yao, C. Bai, X. Wang, J. Alloy. Compd. 828, 154310 (2020)

    Article  CAS  Google Scholar 

  8. E. Airiskallio, E. Nurmi, M.H. Heinonen, I.J. Väyrynen, K. Kokko, M. Ropo, M.P.J. Punkkinen, H. Pitkänen, M. Alatalo, J. Kollár, B. Johansson, L. Vitos, Corros. Sci. 52, 3394 (2010)

    Article  CAS  Google Scholar 

  9. S. Ukai, Y. Yano, T. Inoue, Mat. Sci. Eng. A 812, 141076 (2021)

    Article  CAS  Google Scholar 

  10. S.A. Briggs, P.D. Edmondson, K.C. Littrell, Acta Mater. 129, 217 (2017)

    Article  CAS  Google Scholar 

  11. Y.Y. Zhang, H.Y. Sun, H.Y. Wang, X.L. Wang, X.G. An, K. He, Mater. Sci. Eng. A 826, 142003 (2021)

    Article  CAS  Google Scholar 

  12. S. Wu, J. Li, W. Li, S. Liu, J. Alloy. Compd. 814, 152282 (2020)

    Article  CAS  Google Scholar 

  13. R. Ding, H. Wang, Y. Jiang, R. Liu, K. Jing, M. Sun, R. Zhang, S. Qiu, Z. Xie, H. Deng, X. Wang, M. Kong, W. Jiang, Q. Fang, C. Liu, J. Alloy. Compd. 805, 1025 (2019)

    Article  CAS  Google Scholar 

  14. J. Eklund, B. Jönsson, A. Persdotter, J. Liske, J.E. Svensson, T. Jonsson, Corros. Sci. 144, 266 (2018)

    Article  CAS  Google Scholar 

  15. Z.Q. Sun, Y. Yamamoto, Mat. Sci. Eng. A 700, 554 (2017)

    Article  CAS  Google Scholar 

  16. Z.Q. Sun, P.D. Edmondson, Y. Yamamoto, Acta Mater. 144, 716 (2018)

    Article  CAS  Google Scholar 

  17. Y.Y. Zhang, H. Wang, X.G. An, G. Chen, H.Y. Sun, Y. Wang, J. Mater. Sci. 56, 8815 (2021)

    Article  CAS  Google Scholar 

  18. Z.Q. Sun, H.B. Bei, Y. Yamamoto, Mater. Charact. 132, 126 (2017)

    Article  CAS  Google Scholar 

  19. G. Chen, H. Wang, H.Y. Sun, Y.Y. Zhang, P. Cao, J. Wang, Mat. Sci. Eng. A 803, 140500 (2021)

    Article  CAS  Google Scholar 

  20. Y. Yamamoto, B.A. Pint, K.A. Terrani, K.G. Field, Y. Yang, L.L. Snead, J. Nucl. Mater. 467, 703 (2015)

    Article  CAS  Google Scholar 

  21. Z.Q. Sun, Y. Yamamoto, X. Chen, Mater. Sci. Eng. A 734, 93 (2018)

    Article  CAS  Google Scholar 

  22. S. Ukai, S. Kato, T. Furukawa, Mat. Sci. Eng. A 794, 139863 (2020)

    Article  CAS  Google Scholar 

  23. S.J. Zinkle, G.S. Was, Acta Mater. 61, 735 (2012)

    Article  Google Scholar 

  24. S.A. Maloy, E. Aydogan, O. Anderoglu, C. Lavender, Y. Yamamoto, Los Alamos National laboratory, LA-UR-15-27348 (2016).

  25. F. Gao, Z.Y. Liu, G.D. Wang, J. Mater. Sci. 48, 2404 (2012)

    Article  Google Scholar 

  26. X.F. Huang, H. Wang, S.Y. Qiu, Y.Y. Zhang, K. He, B.D. Wu, J. Mater. Process. Technol. 277, 116434 (2020)

    Article  CAS  Google Scholar 

  27. X.L. Liang, H. Wang, Q.F. Pan, J.Y. Zheng, H.Q. Liu, R.Q. Zhang, Y. Xu, Y. Xu, D.Q. Yi, J. Iron Steel Res. Int. 27, 549 (2020)

    Article  CAS  Google Scholar 

  28. Y.M. Wang, E. Ma, Acta Mater. 52, 1699 (2004)

    Article  CAS  Google Scholar 

  29. R.K. Ray, R. Saha, Mater. Sci. For. 753, 201 (2013)

    Google Scholar 

  30. K. Nakashima, M. Suzuki, Y. Futamura, T. Tsuchiyama, S. Takaki, Mater. Sci. For. 503–504, 627 (2006)

    Google Scholar 

  31. N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, Acta Mater. 50, 4603 (2002)

    Article  CAS  Google Scholar 

  32. L.H. An, Y. Cai, W. Liu, S.J. Yuan, S.Q. Zhu, F.C. Meng, Trans. Nonferrous Met. Soc. China 22, s370 (2012)

    Article  CAS  Google Scholar 

  33. S. Patra, S.K.M.D. Hasan, N. Narasaiah, D. Chakrabarti, Mater. Sci. Eng. A 538, 145 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52122103) and the Sichuan Science and Technology Program (No. 2022YFG0346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Guo.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Guo, B., An, X. et al. Influence of Cold-Rolling Reduction on Microstructure and Tensile Properties of Nuclear FeCrAl Alloy with Low Cr and Nb Contents. Acta Metall. Sin. (Engl. Lett.) 35, 2101–2110 (2022). https://doi.org/10.1007/s40195-022-01452-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-022-01452-0

Keywords

Navigation