Skip to main content
Log in

Effects of Crystal Orientations on the Low-Cycle Fatigue of a Single-Crystal Nickel-Based Superalloy at 980 °C

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The influence of crystal orientations on the low-cycle fatigue (LCF) behavior of a 3Re-bearing Ni-based single-crystal superalloy at 980 °C has been investigated. It is found that the orientation dependence of the fatigue life not only depends on the elastic modulus, but also the number of active slip planes and the plasticity of materials determine the LCF life, especially for the [011] and [111] specimens. The [011] and [111] specimens with better plasticity withstand relatively concentrated inelastic deformation caused by fewer active slip planes, compared to the [001] specimens resisting widespread deformation caused by a higher number of active slip planes. Additionally, fatigue fracture is also influenced by cyclic plastic deformation mechanisms of the alloy with crystal orientations, and the [001] specimens are plastically deformed by wave slip mechanism and fracture along the non-crystallographic plane, while the [011] and [111] specimens are plastically deformed by planar slip mechanism and fracture along the crystallographic planes. Moreover, casting pores, eutectics, inclusions and surface oxide layers not only initiate the crack, but also reduce the stress concentration around crack tips. Our results throw light upon the effect of inelastic strain on the LCF life and analyze the cyclic plastic deformation for the alloy with different orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P.A.S. Reed, I. Sinclair, X.D. Wu, Metall. Mater. Trans. A 31, 109 (2000)

    Article  Google Scholar 

  2. T. Jin, Y.Z. Zhou, X.G. Wang, J.L. Liu, X.F. Sun, Z.Q. Hu, Acta Metall. Sin. 51, 1153 (2015) (in Chinese)

    Google Scholar 

  3. X. Ma, H. Shi, J. Gu, G. Chen, O. Luesebrink, H. Hardersd, Procedia Eng. 2, 2287 (2010)

    Article  Google Scholar 

  4. W.H. Qiu, Z.W. He, Y.N. Fan, H.J. Shi, J.L. Gu, Int. J. Fatigue 83, 335 (2016)

    Article  Google Scholar 

  5. J.S. Wan, Z.F. Yue, Mater. Sci. Eng. A 392, 145 (2005)

    Article  Google Scholar 

  6. L.N. Wang, Y. Liu, J.J. Yu, Y. Xu, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng. A 505, 144 (2009)

    Article  Google Scholar 

  7. J. Yu, J.R. Li, J.Q. Zhao, M. Han, Z.X. Shi, S.Z. Liu, H.L. Yuan, Mater. Sci. Eng. A 560, 47 (2013)

    Article  Google Scholar 

  8. R. Chieragatti, L. Remy, Mater. Sci. Eng. A 141, 11 (1991)

    Article  Google Scholar 

  9. T.P. Gabb, J. Gayda, R.V. Miner, Metall. Trans. A 17, 497 (1986)

    Article  Google Scholar 

  10. H.U. Hong, J.G. Kang, B.G. Choi, I.S. Kim, Y.S. Yoo, C.Y. Jo, Int. J. Fatigue 33, 1592 (2011)

    Article  Google Scholar 

  11. J.J. Moverare, S. Johansson, R.C. Reed, Acta Mater. 57, 2266 (2009)

    Article  Google Scholar 

  12. R. Chieragatti, L. Remy, Mater. Sci. Eng. A 141, 1 (1991)

    Article  Google Scholar 

  13. Y. Li, B. Su, X. Wu, J. Aeronaut. Mater. 21, 22 (2001) (in Chinese)

    Google Scholar 

  14. J. Chen, Z. Ding, Z. Yin, Z. Yang, X. Cheng, Mater. Mech. Eng. 30, 9 (2006) (in Chinese)

    Google Scholar 

  15. M. Segersäll, D. Leidermark, J.J. Moverare, Mater. Sci. Eng. A 623, 68 (2015)

    Article  Google Scholar 

  16. Z. He, Y. Zhang, W. Qiu, H. Shi, J. Gu, Mater. Sci. Eng. A 676, 246 (2016)

    Article  Google Scholar 

  17. S. Li, L. Ping, Rare Met. Mater. Eng. 44, 288 (2015)

    Article  Google Scholar 

  18. T.P. Gabb, G. Welsch, R.V. Miner, J. Gayda, Mater. Sci. Eng. A 108, 189 (1989)

    Article  Google Scholar 

  19. T.P. Gabb, G. Welsch, Acta Metall. 37, 2507 (1989)

    Article  Google Scholar 

  20. Y. Li, X. Wu, H. Yu, B. Su, M. Zhang, Mater Mech. Eng. 38, 15 (2014) (in Chinese)

    Article  Google Scholar 

  21. L. Liu, J. Meng, J. Liu, T. Jin, X. Sun, H. Zhang, Mater. Des. 131, 441 (2017)

    Article  Google Scholar 

  22. L.F. Coffin, Trans. Am. Soc. Mech. Eng. 76, 931 (1954)

    Google Scholar 

  23. S.S. Manson, National Advisory Commission on Aeronautics: Report 1170 (Lewis Flight Propulsion Laboratory, Cleveland, 1954)

    Google Scholar 

  24. S. Suresh, Metall. Trans. A 14, 2375 (1983)

    Article  Google Scholar 

  25. Z.W. Huang, F.H. Yuan, Z.G. Wang, S.J. Zhu, F.G. Wang, Acta Metall. Sin. 43, 1025 (2007) (in Chinese)

    Google Scholar 

  26. S. Ma, D. Brown, M. Bourke, M. Daymond, B. Majumdar, Mater. Sci. Eng. A 399, 141 (2005)

    Article  Google Scholar 

  27. W.M. Gui, H.Y. Zhang, M. Yang, T. Jin, X.F. Sun, Q. Zheng, Acta Metall. Sin. (Engl. Lett.) 30, 1192 (2017)

    Article  Google Scholar 

  28. P. Li, Q.Q. Li, T. Jin, Y.Z. Zhou, J.G. Li, X.F. Sun, Z.F. Zhang, Int. J. Fatigue 63, 137 (2014)

    Article  Google Scholar 

  29. Z.W. Huang, F.H. Yuan, Z.G. Wang, S.J. Zhu, F.G. Wang, Acta Metall. Sin. 43, 678 (2007) (in Chinese)

    Google Scholar 

  30. C. Xu, Q.L. Nai, Z.H. Yao, H. Jiang, J.X. Dong, Acta Metall. Sin. 53, 1453 (2017) (in Chinese)

    Google Scholar 

  31. M. Valsan, D.H. Sastry, K.B.S. Rao, S.L. Mannan, Metall. Mater. Trans. A 25, 159 (1994)

    Article  Google Scholar 

  32. L. Remy, M. Geuffrard, A. Alam, A. Koster, E. Fleury, Int. J. Fatigue 57, 37 (2013)

    Article  Google Scholar 

  33. Z.D. Fan, D. Wang, L.H. Lou, Acta Metall Sin. (Engl. Lett.) 28, 152 (2015)

    Article  Google Scholar 

  34. Z.D. Fan, D. Wang, C. Liu, G. Zhang, J. Shen, L.H. Lou, J. Zhang, Acta Metall. Sin. (Engl. Lett.) 30, 878 (2017)

    Article  Google Scholar 

  35. J. Telesman, L.J. Ghosn, J. Eng. Gas Turbines Power 118, 399 (1996)

    Article  Google Scholar 

  36. R.E. Stoltz, A.G. Pineau, Mater. Sci. Eng. 34, 275 (1978)

    Article  Google Scholar 

  37. K.S. Chan, G.R. Leverant, Metall. Trans. A 18, 593 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51571196, 51671188 and 5160119) and Shenyang Science and Technology Project (No. 17-101-2-00). The authors are grateful for those supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Meng.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Meng, J., Liu, JL. et al. Effects of Crystal Orientations on the Low-Cycle Fatigue of a Single-Crystal Nickel-Based Superalloy at 980 °C. Acta Metall. Sin. (Engl. Lett.) 32, 381–390 (2019). https://doi.org/10.1007/s40195-018-0779-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0779-4

Keywords

Navigation