Skip to main content
Log in

Elevated-temperature fatigue crack growth Behavior of MAR-M200 Single Crystals

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The fatigue crack growth behavior of MAR-M200 single crystals was examined at 982 °C. Using tubular specimens, fatigue crack growth rates were determined as functions of crystallographic orientation and the stress state by varying the applied shear stress range-to-normal stress range ratio. Neither crystallographic orientation nor stress state was found to have a significant effect on crack growth rate when correlated with an effective ΔK which accounted for mixed-mode loading and elastic anisotropy. For both uniaxial and multiaxial fatigue, crack growth generally occurred normal to the principal stress direction and in a direction along which ΔK II vanished. Consequently, the effective ΔK was reduced to ΔKI and the rate of propagation was controlled by ΔK I only. The through-thickness fatigue cracks were generally noncrystallographic with fracture surfaces exhibiting striations in the [010], [011], and [111] crystals, but striation-covered ridges in the [211] specimen. These fracture modes are contrasted to crystallographic cracking along slip bands observed at ambient temperature. The difference in cracking behavior at 25 and 982 °C is explained on the basis of the propensity for homogeneous, multiple slip at the crack tip at 982 °C. The overall fracture mechanism is discussed in conjunction with Koss and Chan’s coplanar slip model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Gell, D. N. Duhl, and A. F. Giamei: inSuperalloys, 1980, Proceedings of the Fourth Int. Sym. on Superalloys, ASM International, Metals Park, OH, 1980, pp. 205–14.

    Google Scholar 

  2. M. Gell and G. R. Leverant:Trans. AIME, 1968, vol. 242, pp. 1869–79.

    Google Scholar 

  3. G. R. Leverant and M. Gell:Trans. AIME, 1969, vol. 245, pp. 1167–73.

    CAS  Google Scholar 

  4. G. R. Leverant and M. Gell:Metall. Trans. A, 1975, vol. 6A, pp. 367–71.

    Article  CAS  Google Scholar 

  5. D. L. Anton:Acta Metall., 1984, vol. 32, pp. 1669–79.

    Article  CAS  Google Scholar 

  6. P. J. E. Forsyth:Proc. of the Crack Propagation Symposium, Cranfield, 1961, pp. 76–94.

  7. M. Nageswararao and V. Gerold:Metall. Trans. A, 1976, vol. 7A, pp. 1847–55.

    Article  CAS  Google Scholar 

  8. M. Wilhelm, M. Nageswararao, and R. Meyer:Fatigue Mechanisms, J.T. Fong, ed., ASTM STP 675, ASTM, 1979, pp. 214–33.

    Chapter  Google Scholar 

  9. G. P. Van der Velde and D. A. Koss:Fatigue 84, C. J. Beevers, ed., EMAS Ltd., West Midlands, U.K., 1984, vol. 1, pp. 411–21.

    Google Scholar 

  10. J. R. Wilcox and D. A. Koss:Hydrogen Effects in Metals, TMS-AIME, Warrendale, PA, 1981, pp. 745–52.

    Google Scholar 

  11. KossD.A. and K.S. Chan:Acta Metall., 1980, vol. 28, pp. 1245–52.

    Article  CAS  Google Scholar 

  12. D. A. Koss and K. S. Chan:Dislocation Modeling of Physical Systems, Pergamon Press, Oxford, U.K., 1981, pp. 18–22.

    Book  Google Scholar 

  13. K. S. Chan, J. E. Hack, and G. R. Leverant:Metall. Trans. A, 1987, vol. 18A, pp. 581–91.

    Article  CAS  Google Scholar 

  14. K. S. Chan, J. E. Hack, and G. R. Leverant:Metall. Trans. A, 1986, vol. 17A, pp. 1739–50.

    Article  Google Scholar 

  15. B. H. Kear and B. J. Piearcey:Trans. AIME, 1967, vol. 239, pp. 1209–15.

    CAS  Google Scholar 

  16. S. M. Copley, B. H. Kear, and G. M. Rowe:Mater. Sci. Eng., 1972, vol. 10, pp. 87–92.

    Article  CAS  Google Scholar 

  17. A.F. Giamei: Final Technical Report, Contract No. F44620-76- C-0028, Air Force Office of Scientific Research, 1979.

  18. J. L. Yuen, P. Roy, and W. D. Nix:Metall. Trans. A, 1984, vol. 15A, pp. 1769–75.

    Article  CAS  Google Scholar 

  19. C. A. Rau, A.E. Gemma, and G.R. Leverant: ASTM STP 520, ASTM, 1973, pp. 166–78.

  20. G. R. Leverant, T. E. Strangeman, and B.S. Langer:Superalloys: Metallurgy and Manufacture, Claitor’s Publishing Division, Baton Rouge, LA, 1976, pp. 285–95.

    Google Scholar 

  21. A. E. Gemma, B. S. Langer, and G. R. Leverant: ASTM STP 612, ASTM, 1976, pp. 199–213.

  22. S. W. Hopkins: ASTM STP 612, ASTM, 1976, pp. 157–69.

  23. ASTM E-647:Annual Book of ASTM Standard, ASTM, Philadelphia, PA, 1983, pp. 710-30.

  24. K. S. Chan and T. A. Cruse:Engineering Fracture Mechanics, 1986, vol. 23, pp. 863–74.

    Article  Google Scholar 

  25. D. P. DeLuca and B. A. Cowles: AFWAL-TR-84-4167, 1984.

  26. K. S. Chan:Acta Metall., 1986, in press.

  27. M. Gell and G. R. Leverant:Fatigue at Elevated Temperature, ASTM STP 520, ASTM, 1973, pp. 37–65.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, K.S., Leverant, G.R. Elevated-temperature fatigue crack growth Behavior of MAR-M200 Single Crystals. Metall Trans A 18, 593–602 (1987). https://doi.org/10.1007/BF02649475

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649475

Keywords

Navigation