Skip to main content
Log in

Influence of Annealing Temperature on the Microstructure and Electrical Properties of Indium Tin Oxide Thin Films

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Indium tin oxide (ITO) thin films were prepared on alumina ceramic substrates by radio frequency magnetron sputtering. The samples were subsequently annealed in air at temperatures ranging from 500 to 1,100 °C for 1 h. The influences of the annealing temperature on the microstructure and electrical properties of the ITO thin films were investigated, and the results indicate that the as-deposited ITO thin films are amorphous in nature. All samples were crystallized by annealing at 500 °C. As the annealing temperature increases, the predominant orientation shifts from (222) to (400). The carrier concentration decreases initially and then increases when the annealing temperature rises beyond 1,000 °C. The resistivity of the ITO thin films increases smoothly as the annealing temperature increases to just below 900 °C. Beyond 900 °C, however, the resistivity of the films increases sharply. The annealing temperature has a significant effect on the stability of the ITO/Pt thin film thermocouples (TFTCs). TFTCs annealed at 1,000 °C show improved high-temperature stability and Seebeck coefficients of up to 77.73 μV/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.C. Martin, G.C. Fralick, K.F. Taylor, NASA TM-208812 (1999)

  2. L.C. Martin, J.D. Wrbanek, G.C. Fralick, NASA TM-211149 (2001)

  3. J.D. Wrbanek, G.C. Fralick, S.C. Farmer, A. Sayir, C.A. Blaha, J.M. Gonzalez, NASA TM-213211 (2004)

  4. D. Burgess, M. Yust, K.G. Kreider, Sens. Actuators A 34, 95 (1990)

    Google Scholar 

  5. K.G. Kreider, G. Gillen, Thin Solid Films 376, 32 (2000)

    Article  Google Scholar 

  6. H.D. Bhatt, R. Vedula, S.B. Desu, G.C. Fralick, Thin Solid Films 342, 214 (1999)

    Article  Google Scholar 

  7. H.D. Bhatt, R. Vedula, S.B. Desu, G.C. Fralick, Thin Solid Films 350, 249 (1999)

    Article  Google Scholar 

  8. B.H. Lee, L.G. Kim, S.W. Cho, S.H. Lee, Thin Solid Films 302, 25 (1997)

    Article  Google Scholar 

  9. S.K. Park, J.I. Han, W.K. Kim, M.G. Kwak, Thin Solid Films 397, 49 (2001)

    Article  Google Scholar 

  10. Y.H. Tak, K.B. Kim, H.G. Park, K.H. Lee, J.R. Lee, Thin Solid Films 411, 12 (2002)

    Article  Google Scholar 

  11. O.J. Gregory, E. Busch, G.C. Fralick, X.M. Chen, Thin Solid Films 518, 6093 (2010)

    Article  Google Scholar 

  12. O.J. Gregory, M. Amani, G.C. Fralick, Appl. Phys. Lett. 99, 013107 (2011)

    Article  Google Scholar 

  13. X.M. Chen, O.J. Gregory, M. Amani, J. Am. Ceram. Soc. 94(3), 854 (2011)

    Article  Google Scholar 

  14. O.J. Gregory, M. Amani, I.M. Tougas, A.J. Drehman, J. Am. Ceram. Soc. 95(2), 705 (2012)

    Article  Google Scholar 

  15. C.H. Yang, S.C. Lee, S.C. Chen, T.C. Lin, Mater. Sci. Eng. B 129, 154 (2006)

    Article  Google Scholar 

  16. G. Goncalves, E. Elangovan, P. Barquinha, L. Pereira, R. Martins, E. Fortunato, Thin Solid Films 515, 8562 (2007)

    Article  Google Scholar 

  17. T.S. Sathiaraj, Microelectron. J. 39, 1444 (2008)

    Article  Google Scholar 

  18. I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, R123 (1986)

    Article  Google Scholar 

  19. S. Bhagwat, R.P. Howson, Surf. Coat. Technol. 111, 163 (1999)

    Article  Google Scholar 

  20. K. Ellmer, R. Mientus, Thin Solid Films 516, 5829 (2008)

    Article  Google Scholar 

  21. C.M. Bhandari, CRC Handbook of Thermoelectricity (CRC Press, Boca Raton, FL, 1995), pp. 12–14

    Google Scholar 

  22. S.S. Kubakaddi, B.G. Mulimani, J. Appl. Phys. 58, 3643 (1985)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 61223002), the State Key Laboratory of Electronic Thin Films and Integrated Devices Foundation of China (No. KFJJ201206) and Science and Technology Innovation Foundation of Sichuan (No. 2012ZZ020). We are grateful to the China Gas Turbine Establishment for their assistance with the calibration experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchuan Jiang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Jiang, H., Jiang, S. et al. Influence of Annealing Temperature on the Microstructure and Electrical Properties of Indium Tin Oxide Thin Films. Acta Metall. Sin. (Engl. Lett.) 27, 368–372 (2014). https://doi.org/10.1007/s40195-014-0059-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-014-0059-x

Keywords

Navigation