Skip to main content

Advertisement

Log in

Microstructure evolution, diffusion behavior and fatigue properties of TC4 titanium alloy joints brazed with Ti–Zr-based filler

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

TC4 titanium alloy was brazed with Ti–18Zr–15Cu–10Ni (wt%) filler in a vacuum brazing furnace. The effects of the brazing time on the microstructure and tensile properties of the brazed joints were investigated, and the microstructure evolution during the brazing process and the high-cycle fatigue properties were further analyzed. The interfacial microstructure of the brazed joint at 940 °C for 60 min consists of coarse acicular α Ti, (Ti/Zr)2(Cu/Ni) intermetallics, eutectoid α Ti, and residual β Ti. The nucleation and growth of α Ti cause the component segregation, resulting in the rich of Cu, Ni, and V in β Ti to form βrich Ti, which in turn leads to the eutectoid decomposition reaction of βrich Ti, and the formation of granular intermetallic compounds at the edge of residual β Ti. The tensile strength increases first and then decreases with the brazing time, the maximum tensile strength (984.90 MPa) is obtained at 940 °C for 60 min, and the elongation at break increases with the prolongation of the brazing time; the maximum elongation at break (12.39%) is obtained at the brazing time of 90 min due to the large size of the αp phase. The fatigue limit of the brazed joints at 940 °C for 60 min is 492 MPa. The location of fracture is highly dependent on the fatigue load stress amplitude, and the growth rate of the fatigue crack is greatly affected by the microstructure of the fracture area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Antunes RA, De Oliveiraa MCL, Salvador CAF (2018) Materials selection of optimized titanium alloys for aircraft applications. Mater Res 21(2):e20170979. https://doi.org/10.1590/1980-5373-MR-2017-0979

    Article  CAS  Google Scholar 

  2. Zhu ZS, Shang GQ, Wang XN et al (2020) Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications. JAM 40(3):1–10. https://doi.org/10.11868/j.issn.1005-5053.2020.000086

    Article  Google Scholar 

  3. Boyer RR, Briggs RD (2013) The use of β titanium alloys in the aerospace industry. J Mater Eng Perform 22(10):2916–2920. https://doi.org/10.1007/s11665-013-0728-3

    Article  CAS  Google Scholar 

  4. Liu XY, Chu PK, Ding CX (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep 47(3–4):49–121. https://doi.org/10.1016/j.mser.2004.11.001

    Article  CAS  Google Scholar 

  5. Guan J, Jiang XT, Xiang Q, Yang F, Liu J (2021) Corrosion and tribocorrosion behavior of titanium surfaces designed by electromagnetic induction nitriding for biomedical applications. Surf Coat Tech 409:126844. https://doi.org/10.1016/j.surfcoat.2021.126844

    Article  CAS  Google Scholar 

  6. Dai JJ, Zhu JY, Chen CZ, Weng F (2016) High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: a review. J Alloy Compd 685:784–798. https://doi.org/10.1016/j.jallcom.2016.06.212

    Article  CAS  Google Scholar 

  7. Olson DL, Siewert TA, Liu S, Edwards GR (1993) ASM handbook volume 6: welding, brazing and soldering, ASM Int. Materials Park, OH. https://doi.org/10.31399/asm.hb.v06.9781627081733

  8. Schwartz M (1995) Brazing: for the engineering technologist, ASM Int. Materials Park, OH. https://doi.org/10.5860/choice.32-6252

  9. Lee MK, Lee JG (2013) Mechanical and corrosion properties of Ti-6Al-4V alloy joints brazed with a low-melting-point 62.7Zr–11.0Ti–13.2Cu–9.8Ni–3.8Be amorphous filler metal. Mater Charact 81:19–27. https://doi.org/10.1016/j.matchar.2013.04.002

    Article  CAS  Google Scholar 

  10. Chang E, Chen CH (1997) Low-melting-point titanium-base brazing alloys–pare 1: characteristics of two-, three-, and four-component filler metals. J Mater Eng Perform 6:792–796. https://doi.org/10.1007/s11665-997-0083-3

    Article  CAS  Google Scholar 

  11. Wu ZY, Shiue RK, Chang CS (2009) Transmission electron microscopy study of infrared brazed titanium alloy using Clad Ti–25Cu–15Ni filler. ISIJ Int 49(6):931–933. https://doi.org/10.2355/isijinternational.49.931

    Article  CAS  Google Scholar 

  12. Ganjeh E, Sarkhosh H (2013) Microstructural, mechanical and fractographical study of titanium-CP and Ti–6Al–4V similar brazing with Ti-based filler. Mater Sci Eng A 559:119–129. https://doi.org/10.1016/j.msea.2012.08.043

    Article  CAS  Google Scholar 

  13. Liu SL, Miao JK, Zhang WW et al (2020) Interfacial microstructure and shear strength of TC4 alloy joints vacuum brazed with Ti–Zr–Ni–Cu filler metal. Mater Sci Eng A 775:138990. https://doi.org/10.1016/j.msea.2020.138990

    Article  CAS  Google Scholar 

  14. Jing YJ, Yue XS, Gao XQ, Su DY, Hou JB (2016) The influence of Zr content on the performance of TiZrCuNi brazing filler. Mater Sci Eng A 678:190–196. https://doi.org/10.1016/j.msea.2016.09.115

    Article  CAS  Google Scholar 

  15. Liu D, Song YY, Zhou YH et al (2018) Brazing of C/C composite and Ti-6Al-4V with graphene strengthened AgCuTi filler: effects of graphene on wettability, microstructure and mechanical properties. Chinese J Aeronaut 31(7):1602–1608. https://doi.org/10.1016/j.cja.2017.08.017

    Article  Google Scholar 

  16. Guo W, Xue JL, Zhang HQ, Cui H et al (2020) The role of foam on microstructure and strength of the brazed C/C composites/Ti6Al4V alloy joint. Vacuum 179:109543. https://doi.org/10.1016/j.vacuum.2020.109543

    Article  CAS  Google Scholar 

  17. Guo W, Li K, Zhang HQ, Zhu Y et al (2022) Low residual stress C/C composite-titanium alloy joints brazed by foam interlayer. Ceram 48:5260–5266. https://doi.org/10.1016/j.ceramint.2021.11.067

    Article  CAS  Google Scholar 

  18. Ba J, Zheng XH, Ning R, Lin JH et al (2019) C/SiC composite-Ti6Al4V joints brazed with negative thermal expansion ZrP2WO12 nanoparticle reinforced AgCu alloy. J Eur Ceram Soc 39:755–761. https://doi.org/10.1016/j.jeurceramsoc.2018.12.028

    Article  CAS  Google Scholar 

  19. Jing YJ, Xiong HP, Shang YL et al (2020) Design TiZrCuNi filler materials for vacuum brazing TA15 alloy. J Manuf Process 53:328–335. https://doi.org/10.1016/j.jmapro.2020.02.021

    Article  Google Scholar 

  20. Liu Y, Hu J, Zhang Y, Guo Z (2013) Interface microstructure of the brazed zirconia and Ti-6Al-4V using Ti-based amorphous filler metal. Sci Sinter 45(3):313–321. https://doi.org/10.2298/SOS1303313L

    Article  CAS  Google Scholar 

  21. Pang SJ, Sun LL, Xiong HP et al (2016) A multicomponent TiZr-based amorphous brazing filler metal for high-strength joining of titanium alloy. Scr Mater 117:55–59. https://doi.org/10.1016/j.scriptamat.2016.02.006

    Article  CAS  Google Scholar 

  22. Massalski TB (1990) Binary alloy phase diagrams. ASM Int. Materials Park, OH

  23. Wu BS, Dong HG, Li P et al (2022) Vacuum diffusion bonding of TC4 titanium alloy and T2 copper by a slow cooling heat treatment. J Mater Process Technol 305:117595. https://doi.org/10.1016/j.jmatprotec.2022.117595

    Article  CAS  Google Scholar 

  24. Jing YJ, Yang HB, Shang YL, Xiong HP (2021) The design of a new Ti–Zr–Cu–Ni–Ag brazing fller metal for brazing of titanium alloys. Weld World 65:2231–2237. https://doi.org/10.1007/s40194-021-01181-5

    Article  CAS  Google Scholar 

  25. Popov AA, Lugovaya KI, Popova EN, Makarov VV, Zhilyakova MA (2020) Features of the two-phase (α + α2) structure formation in the Ti–17 at % Al alloy. Phys Met Metallogr 121(8):791–796. https://doi.org/10.1134/S0031918X20080062

    Article  CAS  Google Scholar 

  26. Bikash K, Swagat D, Swarup B (2021) On the interaction of cooling rate with thermal-microstructural-mechanical characteristics of laser-welded α + β titanium alloy. Adv Mater Process Te 1-16. https://doi.org/10.1080/2374068X.2021.1946337

  27. Dobromyslov AV (2021) Bainitic transformation in titanium alloys. Phys Met Metallogr 122(3):237–265. https://doi.org/10.1134/S0031918X21030042

    Article  CAS  Google Scholar 

  28. Rosenberg HW, Snow KS (1973) Microsegregation in titanium alloys. Light Metals 1:439–448

  29. Yue GL, Chen TC, Shiue RK, Tsay LW (2021) Dissimilar brazing of Ti–15Mo–5Zr–3Al and commercially pure titanium using Ti–Cu–Ni foil. Materials 14(20):5949. https://doi.org/10.3390/ma14205949

    Article  CAS  Google Scholar 

  30. Lee JG, Kim GH, Lee MK, Rhee CK (2021) Intermetallic formation in a Ti–Cu dissimilar joint brazed using a Zr-based amorphous alloy filler. Intermetallics 18(4):529–535. https://doi.org/10.1016/j.intermet.2009.10.005

    Article  CAS  Google Scholar 

  31. Peng Y, Li JL, Du YJ (2021) Microstructure and mechanical properties of joints prepared by vacuum brazing on TC4 titanium alloy with Ag as filler metal. Vacuum 187:110134. https://doi.org/10.1016/j.vacuum.2021.110134

    Article  CAS  Google Scholar 

  32. Zou ZH, Zeng FH et al (2017) The joint strength and fracture mechanisms of TC4/TC4 and TA0/TA0 brazed with Ti-25Cu-15Ni braze alloy. ASM Sci J 26:2079–2085. https://doi.org/10.1007/s11665-017-2554-5

    Article  CAS  Google Scholar 

  33. Jing YJ, Su DY, Yue XS et al (2017) The development of high strength brazing technique for Ti-6Al-4V using TiZrCuNi amorphous filler. Mater Charact 131:526–531. https://doi.org/10.1016/j.matchar.2017.07.039

    Article  CAS  Google Scholar 

  34. Zhang H, Li JL, Ma PY, Xiong JT et al (2017) Study on microstructure and impact toughness of TC4 titanium alloy diffusion bonding joint. Vacuum 152:272–277. https://doi.org/10.1016/j.vacuum.2018.03.019

    Article  CAS  Google Scholar 

  35. Fall A, Jahazia M et al (2017) Effect of process parameters on microstructure and mechanical properties of friction stir-welded Ti-6Al-4V joints. Int J Adv Manuf Tech 91:2919–2931. https://doi.org/10.1007/s00170-016-9527-y

    Article  Google Scholar 

  36. Sun WJ, Wang SL, Wu M et al (2021) Revealing tensile behaviors and fracture mechanism of Ti–6Al–4V titanium alloy electron-beam-welded joints using microstructure evolution and in situ tension observation. Mater Sci Eng A 824:141811. https://doi.org/10.1016/j.msea.2021.141811

    Article  CAS  Google Scholar 

  37. Moletsane MG, Krakhmalev P et al (2016) Tensile properties and microstructure of direct metal laser-sintered TI6AL4V (ELI) alloy. S Afr J Ind Eng 27(3):110–121. https://doi.org/10.7166/27-3-1667

    Article  Google Scholar 

  38. Zhao YX, Yang B (2008) Probabilistic measurement of the fatigue limit data from a small sampling up-and-down test method. Int J Fatigue 30(12):2094–2103. https://doi.org/10.1016/j.ijfatigue.2008.06.004

    Article  Google Scholar 

  39. Long J, Zhang LJ, Zhang LX et al (2022) Comparison of fatigue performance of TC4 titanium alloy welded by electron beam welding and laser welding with filler wire. Fatigue Fract Eng M 45(4):991–1004. https://doi.org/10.1111/ffe.13644

    Article  CAS  Google Scholar 

  40. Li TL, Wu HP, Wang B et al (2022) Fatigue crack growth behavior of TA15/TC4 dissimilar laminates fabricated by diffusion bonding. Int J Fatigue 156:0142–1123. https://doi.org/10.1016/j.ijfatigue.2021.106646

    Article  CAS  Google Scholar 

  41. Wang SQ, Ma TJ, Li WY et al (2017) Microstructure and fatigue properties of linear friction welded TC4 titanium alloy joints. Sci Technol Weld Joi 22(3):177–181. https://doi.org/10.1080/13621718.2016.1212971

    Article  CAS  Google Scholar 

  42. Oh J, Kim NJ, Lee S, Lee EW (2003) Correlation of fatigue properties and microstructure in investment cast Ti-6Al-4V welds. Mater Sci Eng A 340(1–2):232–242. https://doi.org/10.1016/S0921-5093(02)00176-4

    Article  Google Scholar 

  43. Han W, Fu L, Chen HY (2018) Effect of welding speed on fatigue properties of TC18 thick plate by electron beam welding. Rare Metal Mat Eng 47(8):2335–2340. https://doi.org/10.1016/S1875-5372(18)30188-7

    Article  CAS  Google Scholar 

  44. Meng XK, Wang H, Tan WS (2020) Gradient microstructure and vibration fatigue properties of 2024–T351 aluminium alloy treated by laser shock peening. Surf Coat Tech 391:125698. https://doi.org/10.1016/j.surfcoat.2020.125698

    Article  CAS  Google Scholar 

  45. Huang ZY, Wagner D, Bathias C et al (2010) Subsurface crack initiation and propagation mechanisms in gigacycle fatigue. Acta Mater 58(18):6046–6054. https://doi.org/10.1016/j.actamat.2010.07.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the significant support from the Aviation Industry Corporation of China (AVIC) and Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoai Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XVII - Brazing, Soldering and Diffusion Bonding

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, L., Teng, J. & Chen, M. Microstructure evolution, diffusion behavior and fatigue properties of TC4 titanium alloy joints brazed with Ti–Zr-based filler. Weld World 66, 2625–2638 (2022). https://doi.org/10.1007/s40194-022-01387-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-022-01387-1

Keywords

Navigation