Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of TC4 joints brazed with Ti–Zr–Cu–Sn amorphous filler alloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The Ti51.44Zr16.26Cu30Sn2.3 (at%) amorphous filler alloy in a ribbon form was prepared by melt spinning. The Ti–6Al–4V alloy was brazed in vacuum furnace by using the Ti51.44Zr16.26Cu30Sn2.3 amorphous filler alloy. The effects of brazing temperature and holding time on the interfacial microstructure and mechanical properties of the Ti–6Al–4V brazed joints were investigated. The brazed joints are composed of α-Ti, β-Ti, and (Ti, Zr)2Cu phases. The shear strength of the joints increases with brazing temperature increasing from 1153 to 1193 K and holding time from 10 to 15 min, while decreases with brazing temperature and time further increasing. Low temperature brazing results in the formation of microcracks and voids in the seams, which are harmful for the shear strength of the joints. In the joint brazed at 1193 K for 15 min, a fine α + β Widmanstätten structure beneficial to the mechanical property is formed, and the joint exhibits relatively high joint strength of 180 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bao JW, Yang SY, Yang T. Microstructural evolution, tensile property and dynamic compressive property of FSWed Ti–6Al–4V alloy. Rare Met. 2020;39(2):169.

    Article  CAS  Google Scholar 

  2. Wang QJ, Sun YL, Shuang YX, Wang W, Zhou HX. Aging-hardening behavior and phase transition kinetics of a novel beta-Ti Alloy. Chin J Rare Met. 2019;43(10):1103.

    Google Scholar 

  3. Ganjeh E, Sarkhosh H, Bajgholi ME, Khorsand H, Ghaffari M. Increasing Ti–6Al–4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys. Mater Charact. 2012;71:31.

    Article  CAS  Google Scholar 

  4. Pang SJ, Sun LL, Xiong HX, Chen C, Liu Y, Li H, Zhang T. A multicomponent TiZr-based amorphous brazing filler metal for high-strength joining of titanium alloy. Scripta Mater. 2016;117:55.

    Article  CAS  Google Scholar 

  5. Li L, Li XQ, Li ZF, Hu K, Qu SG, Yang C. Comparison of TiAl-based intermetallics joints brazed with amorphous and crystalline Ti–Zr–Cu–Ni–Co–Mo fillers. Adv Eng Mater. 2016;18(2):341.

    Article  CAS  Google Scholar 

  6. Hao YL, Li SJ, Yang R. Biomedical titanium alloys and their additive manufacturing. Rare Met. 2016;35(9):661.

    Article  CAS  Google Scholar 

  7. Luo J, Wang LF, Li MQ, Ge CJ, Ma XX, Yang YT. Formation of adiabatic shear band and deformation mechanisms during warm compression of Ti–6Al–4V alloy. Rare Met. 2016;35(8):598.

    Article  CAS  Google Scholar 

  8. Ganjeh E, Sarkhosh H. Microstructural, mechanical and fractographical study of titanium-CP and Ti–6Al–4V similar brazing with Ti-based filler. Mater Sci Eng, A. 2013;559:119.

    Article  CAS  Google Scholar 

  9. Wang Y, Qiu QW, Yang ZW, Wang DP. Microstructure evolution and mechanical properties of Ti–43Al–9V–0.3Y alloy joints brazed with Ti–Zr–Ni–Cu + Mo composite filler. Adv Eng Mater. 2016;18(6):944.

    Article  CAS  Google Scholar 

  10. Li L, Li XQ, Hu K, Qu SG, Yang C, Li ZF. Effects of brazing temperature and testing temperature on the microstructure and shear strength of γ-TiAl joints. Mater Sci Eng, A. 2015;634:91.

    Article  CAS  Google Scholar 

  11. Chang CT, Shiue RK. Infrared brazing Ti–6Al–4V and Mo using the Ti–15Cu–15Ni braze alloy. Int J Refract Met Hard Mater. 2005;23(3):161.

    Article  CAS  Google Scholar 

  12. Shiue RK, Wu SK, Chen YT, Shiue CY. Infrared brazing of Ti50Al50 and Ti–6Al–4V using two Ti-based filler metals. Intermetallics. 2008;16(9):1083.

    Article  CAS  Google Scholar 

  13. Li XQ, Li L, Hu K, Qu SG. Vacuum brazing of TiAl-based intermetallics with Ti–Zr–Cu–Ni–Co amorphous alloy as filler metal. Intermetallics. 2015;57:7.

    Article  CAS  Google Scholar 

  14. Liu YP, Wang G, Cao W, Xu HT, Huang ZJ, Zhu DD, Tan CW. Brazing ZrB2–SiC ceramics to Ti6Al4V alloy with TiCu-based amorphous filler. J Manuf Process. 2017;30:516.

    Article  Google Scholar 

  15. Wang G, Huang YJ, Wang GC, Shen J, Chen ZH. Brazing of Ti2AlNb based alloy with amorphous Ti–Cu–Zr–Ni filler. J Wuhan Univ Technol Mater Sci Ed. 2015;30(3):61.

    Google Scholar 

  16. Chang CT, Du YC, Shiue RK, Chang CS. Infrared brazing of high-strength titanium alloys by Ti–15Cu–15Ni and Ti–15Cu–25Ni filler foils. Mater Sci Eng, A. 2006;420(1–2):155.

    Article  Google Scholar 

  17. Szewieczek D, Tyrlik J. Designing the brazed joint properties with application of amorphous tape as a filler metal. J Mater Process Technol. 1995;53(1–2):405.

    Article  Google Scholar 

  18. Liu YH, Hu JD, Zhang YP, Guo ZX, Yang Y. Joining of zirconia and Ti–6A1–4V using a Ti-based amorphous filler. J Mater Sci Technol. 2011;27(7):653.

    Article  CAS  Google Scholar 

  19. Jing YJ, Yue XS, Gao XQ, Su DY, Hou JB. The influence of Zr content on the performance of TiZrCuNi brazing filler. Mater Sci Eng, A. 2016;678:190.

    Article  CAS  Google Scholar 

  20. Li H, Zhao ZL, Guo HZ, Ning YQ, Yao ZK, Li K. Dependence of α-phase size on flow stress during dynamic recrystallization steady state in Ti60 alloy. Rare Met. 2017;36(11):851.

    Article  CAS  Google Scholar 

  21. Kang DH, Sun JH, Lee DM, Shin SY, Kim HS. Partially alloyed filler sheet for brazing of Ti and its alloys fabricated by spark plasma sintering method. Mater Sci Eng, A. 2009;527(1–2):239.

    Article  Google Scholar 

  22. Elrefaey A, Tillmann W. Effect of brazing parameters on microstructure and mechanical properties of titanium joints. J Mater Process Technol. 2009;209(10):4842.

    Article  CAS  Google Scholar 

  23. Chang CT, Wu ZY, Shiue RK, Chang CS. Infrared brazing Ti–6Al–4V and SP-700 alloys using the Ti–20Zr–20Cu–20Ni braze alloy. Mater Lett. 2007;61(3):842.

    Article  CAS  Google Scholar 

  24. Yan HM, Liu Y, Pang SJ, Zhang T. Glass formation and properties of Ti-based bulk metallic glasses as potential biomaterials with Nb additions. Rare Met. 2018;37(10):831.

    Article  CAS  Google Scholar 

  25. Frick WR. Brazing handbook. Florida: American Welding Society. Miami. 1991. 535.

    Google Scholar 

  26. Kattner UR, Massalski TB. Binary alloy phase diagrams. Materials Park: ASM International. 1990. 147.

    Google Scholar 

  27. Qiu QW, Wang Y, Yang ZW, Hu X, Wang DP. Microstructure and mechanical properties of TiAl alloy joints vacuum brazed with Ti–Zr–Ni–Cu brazing powder without and with Mo additive. Mater Design. 2016;90:650.

    Article  CAS  Google Scholar 

  28. Lee MK, Kim KH, Lee JG, Rhee CK. Growth of isothermally-solidified titanium joints using a multi-component Zr–Ti–Cu–Ni–Be amorphous alloy as a brazing filler. Mater Charact. 2013;80:98.

    Article  Google Scholar 

  29. Botstein O, Schwarzman A, Rabinkin A. Induction brazing of Ti–6Al–4V alloy with amorphous 25Ti–25Zr–50Cu brazing filler metal. Mater Sci Eng, A. 1996;206(1):14.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Project of Natural Science Foundation of Tianjin City (No. 14JCZDJC38600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Li Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HH., Cui, ZD., Zhu, SL. et al. Microstructure and mechanical properties of TC4 joints brazed with Ti–Zr–Cu–Sn amorphous filler alloy. Rare Met. 40, 1881–1889 (2021). https://doi.org/10.1007/s12598-020-01424-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01424-2

Keywords

Navigation