Skip to main content
Log in

Effects of welding defects on the fatigue properties of spot welded automobile steel sheets and the establishment of a fatigue life evaluation method

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The welded areas of spot welding of actual vehicles are confirmed welding defects such as blowholes between steel plates. However, most of studies on the strength reliability of spot welded structures do not consider welding defects, and it is necessary to clarify the effects of weld defects on the strength reliability of spot welded structures. This study investigated the effect of the size and location of through holes simulating welding defects on the fatigue properties of tensile-shear-type spot welded joints using automobile steel sheets. Moreover, the effect of the loading type both tensile-shear and cross-tension type on the fatigue properties of the spot welded joints was investigated, and a unified evaluation of the fatigue life for different loading type joints was established. The size and location of a welding defect do not affect the fatigue strength or the fatigue fracture morphologies of tensile-shear-type spot welded joints. This is because the slit tip of spot welded joints is in the singularity stress field under mixed-mode condition, regardless of the welding defect of the joint. Therefore, the equivalent stress intensity factor at the slit tips of joints can uniformly evaluate the fatigue life of joints with different loading types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kelkar A, Roth R, Clark J (2001) Automobile bodies: can aluminum be an economical alternative to steel? JOM 53(8):28–32

    Article  CAS  Google Scholar 

  2. McAuley JW (2003) Global Sustainability and key needs in future automotive design. Environ Sci Technol 37(23):5414–5416

    Article  CAS  Google Scholar 

  3. Safari H, Nahvi H, Esfahanian M (2018) Improving automotive crashworthiness using advanced high strength steels. Int J Crashworthiness 23(6):645–659

    Article  Google Scholar 

  4. Sutep J-A-K, Ogawa Y, Akebono H, Kato M, Sugeta A, Sun YF, Fujii H (2015) Fatigue damage evaluation of friction stir spot welded cross-tension joints under repeated two-step force amplitudes. J Mater Eng Perform 24(6):2494–2502

    Article  Google Scholar 

  5. Selvaraj T, Ishida S, Arakawa J, Akebono H, Sugeta A, Aoki Y, Fujii H (2021) Elucidation of fatigue characteristics and fracture mechanism of friction stir spot-welded tension-shear joint steels. Fatigue Fract Eng Mater Struct 44(1):74–84

    Article  Google Scholar 

  6. Shikimoto K, Ishida S, Jinnouchi W, Ogawa Y, Akebono H, Sugeta A (2020) Effect of laser patterning preprocessing on fatigue strength of adhesive bonded joints using thin steel plate. Mater Trans 61(3):469–474

    Article  CAS  Google Scholar 

  7. Meschut G, Hahn O, Janzen V, Olfermann T (2014) Innovative joining technologies for multi-material structures. Weld World 58(1):65–75

    Article  CAS  Google Scholar 

  8. Goushegir SM (2016) Friction spot joining (FSpJ) of aluminum-CFRP hybrid structures. Weld World 60(6):1073–1093

    Article  CAS  Google Scholar 

  9. Pouranvari M (2017) Critical assessment: dissimilar resistance spot welding of aluminium/steel: challenges and opportunities. Mater Sci Technol 33(15):1705–1712

    Article  CAS  Google Scholar 

  10. Cullen JD, Athi N, Al-Jader M, Johnson P, Al-Shamma’a AI, Shaw A, El-Rasheed AMA (2008) Multisensor fusion for on line monitoring of the quality of spot welding in automotive industry. Measurement 41(4):412–423

    Article  Google Scholar 

  11. Pouranvari M, Marashi SPH (2013) Critical review of automotive steels spot welding: process, structure and properties. Sci Technol Weld Join 18(5):361–403

    Article  CAS  Google Scholar 

  12. Yu J (2018) Adaptive resistance spot welding process that reduces the shunting effect for automotive high-strength steels. Metals 8(10):775

    Article  CAS  Google Scholar 

  13. Dieter R (1990) Design and analysis of fatigue resistant welded structures. Abington Publishing:378.

  14. Spitsen R, Kim D, Flinn B, Ramulu M, Easterbrook ET (2005) The effects of post-weld cold working processes on the fatigue strength of low carbon steel resistance spot welds. J Manuf Sci Eng 127(4):718–723

    Article  Google Scholar 

  15. Kim DH, Kim HK (2009) Fatigue strength evaluation of cross-tension spot weld joints of cold rolled mild steel sheet. Mater Des 30(8):3286–3290

    Article  CAS  Google Scholar 

  16. Tanegashima R, Akebono H, Kato M, Sugeta A (2013) 3-Dimensional observation of the interior fracture mechanism and establishment of cumulative fatigue damage evaluation on spot welded joints using 590 MPa-class steel. Int J Fatigue 51:121–131

    Article  CAS  Google Scholar 

  17. Tanegashima R, Ohara I, Akebono H, Kato M, Sugeta A (2015) Cumulative fatigue damage evaluations on spot-welded joints using 590MPa-class automobile steel. Fatigue Fract Eng Mater Struct 38(7):870–879

    Article  Google Scholar 

  18. Uematsu Y, Kawabe N, Kakiuchi T, Kato Y, Okita Y, Matsuda H, Tagawa T (2021) Effects of material strength levels and nugget sizes on fatigue behaviour of resistance spot welded steel sheets. Weld Int 33:42–54

    Article  Google Scholar 

  19. Thierry D, Vucko F, Luckeneder G, Weber B, Dosdat L, Bschorr T, Rother K (2016) Fatigue behavior of spot-welded joints in air and under corrosive environments Part I: Materials, specimen and test results in air. Weld World 60(6):1211–1229

    Article  CAS  Google Scholar 

  20. Ordonez JH, Ambriz RR, Garcia C, Plascencia G, Jaramillo D (2019) Overloading effect on the fatigue strength in resistance spot welding joints of a DP980 steel. Int J Fatigue 121:163–171

    Article  CAS  Google Scholar 

  21. Ohara I, Tanegashima R, Akebono H, Kato M, Sugeta A (2014) Three dimensional behavior for internal fatigue damage and effect of artificial defect on fatigue properties of cross tension typed spot welded joints using 300 MPa-class SPCC. Trans Soc Automot Eng Japan 45(5):903–908(in Japanese)

  22. Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng Dec 85(4):519–525

  23. Pan N, Sheppard SD (2003) Stress intensity factors in spot welds. Eng Fract Mech 70(5):671–684

    Article  Google Scholar 

  24. Tanegashima R, Akebono H, Sugeta A (2017) Fatigue life estimation based on fracture mechanics of single spot welded joints under different loading modes. Eng Fract Mech 175:115–126

    Article  Google Scholar 

  25. Fujii T, Tohgo K, Suzuki Y, Yamamoto T, Shimamura Y (2016) Fatigue strength and fatigue fracture mechanism of three-sheet spot weld-bonded joints under tensile-shear loading. Int J Fatigue 87:424–434

    Article  CAS  Google Scholar 

  26. Inohara M, Akebono H, Kato M, Sugeta A (2016) Effects of loading mode on the fatigue behavior of laser welds in automobile mild steel sheet. Weld World 60(3):535–545

    Article  CAS  Google Scholar 

  27. Ogawa Y, Nakahara F, Akebono H, Tanaka K, Sugeta A (2020) Effect of jig constraint state during welding process on fatigue properties of Al/CFRP dissimilar welds and fatigue life evaluation based on singular stress. Fatigue Fract Eng Mater Struct 43(10):2259–2269

    Article  Google Scholar 

  28. JSMS-SD-6–04. Standard evaluation method of fatigue reliability for metallic materials-standard regression method of S-N Curves (2004) The Society of Material Science, Japan: Kyoto, Japan

  29. Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech E24:361–364

    Article  Google Scholar 

  30. Richard HA, Linning W, Henn K (1991) Fatigue crack propagation under combined loading. Forensic Eng 3:99–109

    Google Scholar 

  31. Sajith S, Murthy KSRK, Robi PS (2018) Fatigue life prediction under mixed-mode loading using equivalent stress intensity factor models. Proceedings of MATEC Web of Conferences 172:03005

    Article  Google Scholar 

  32. Tavares SMO, Reis L, de Freitas M, de Castro PMST (2019) Mixed mode fatigue and fracture in planar geometries: observations on Keq and crack path modelling. Fatigue Fract Eng Mater Struct 42(11):2441–2456

    Article  Google Scholar 

Download references

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Akebono.

Ethics declarations

Not applicable

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, Y., Ohara, I., Arakawa, J. et al. Effects of welding defects on the fatigue properties of spot welded automobile steel sheets and the establishment of a fatigue life evaluation method. Weld World 66, 745–752 (2022). https://doi.org/10.1007/s40194-021-01238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-021-01238-5

Keywords

Navigation