Skip to main content
Log in

Fatigue assessment of laser beam and friction stir welded joints made of aluminium

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Available fatigue recommendations are typically developed for arc-welded joints. Some of them may need to be adjusted to fit fatigue life of joints manufactured with non-conventional welding techniques since they show different mechanical properties. Laser beam and friction stir welded butt and overlap joints made from aluminium are addressed in this paper focused on a comparison between different fatigue assessment methods. For an evaluation, S-N data from published papers was collected. Additionally, fatigue tests on laser beam and friction stir welded overlap joints were carried out. For a fatigue assessment, the nominal stress, notch stress and effective stress approach were applied. The comparison of the endurable nominal stresses showed a comparatively high fatigue strength of the tested friction stir welded overlap joints in comparison to literature data. The notches at the interface of the overlap joints were observed to have an asymmetric geometry compared to the common symmetric one, frequently found in literature, leading to a lower stress concentration. A comparison between endurable nominal stresses and the classes FAT 28 for butt welded and FAT 12 for overlap welded joints resulted in a conservative design for the majority of specimens. An evaluation based on notch stresses lead to partly non-conservative results that could be explained by the mild notches present at the laser-beam welded butt joints. For the effective stress approach, an evaluation of the micro-structural length was performed and a FAT-value is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Martin JP, Stanhope C, Gascoyne S (2011) Novel techniques for corner joints using friction stir welding. In: Friction stir welding and processing VI, pp 177–186

  2. Thomas WM et al (1991) GB Patent application no. 9125978.8

  3. Thomas WM (1998) Friction stir welding and related friction process characteristics. In: Proceedings 7th international conference on joints in aluminiumINALCO. Vol 98, pp 157–174

  4. Mishra R, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R Rep 50:1–78. https://doi.org/10.1016/j.mser.2005.07.001

    Article  CAS  Google Scholar 

  5. Scialpi A et al (2008) Mechanical analysis of ultra-thin friction stir welding joined sheets with dissimilar and similar materials. Mater Des 29:928–936. https://doi.org/10.1016/j.matdes.2007.04.006

    Article  CAS  Google Scholar 

  6. Rao H et al (2016) Effect of process parameters on microstructure and mechanical behaviors of friction stir linear welded aluminum to magnesium. Mater Sci Eng A 651:27–36. https://doi.org/10.1016/j.msea.2015.10.082

    Article  CAS  Google Scholar 

  7. Kimapong K, Watanabe T (2004) Friction stir welding of aluminum alloy to steel. Weld J 83:277S-282S

    Google Scholar 

  8. Dawes C (1992) Materials. In: Laser welding. Elsevier, pp 51–77. https://doi.org/10.1533/9781845698843.51

  9. Xiao R, Zhang X (2014) Problems and issues in laser beam welding of aluminum–lithium alloys. J Manuf Process 16.2:166–175. https://doi.org/10.1016/j.jmapro.2013.10.005

    Article  Google Scholar 

  10. Hobbacher A (2016) Recommendations for fatigue design of welded joints and components. ISBN: 331923756X

  11. FKM (2012) Analytical strength assessment of components. VDMA Verlag GmbH, Sept. 11, 2012. 229 pp ISBN: 3816306055

  12. Radaj D, Sonsino CM, Fricke W (2006) Fatigue assessment of welded joints by local approaches. Woodhead publishing

  13. Baumgartner J (2017) Review and considerations on the fatigue assessment of welded joints using reference radii. Int J Fatigue 101:459–468. https://doi.org/10.1016/j.ijfatigue.2017.01.013

    Article  Google Scholar 

  14. Barsoum Z, Khurshid M, Barsoum I (2012) Fatigue strength evaluation of friction stir welded aluminium joints using the nominal and notch stress concepts. Mater Des 41:231–238. https://doi.org/10.1016/j.matdes.2012.05.018

    Article  CAS  Google Scholar 

  15. Besel Y et al (2017) Influence of local fatigue damage evolution on crack initiation behavior in a friction stir welded Al-Mg-Sc alloy. Int J Fatigue 99:151–162. https://doi.org/10.1016/j.ijfatigue.2017.02.024

    Article  CAS  Google Scholar 

  16. Bolser D, Talwar R, Lederich R (2005) Mechanical and corrosion properties of friction stir welded 7050-T7451 aluminium alloy. In: Welding in the world 49, pp 27–33

  17. Boni L, Lanciotti A, Polese C (2015) Size effect in the fatigue behavior of friction stir welded plates. Int J Fatigue 80:2380–245. https://doi.org/10.1016/j.ijfatigue.2015.06.010

    Article  CAS  Google Scholar 

  18. Cirello A et al (2006) AA6082-T6 friction stirwelded joints fatigue resistance: influence of process parameters. Proc Inst Mech Eng Part B J Eng Manuf 220:805–811. https://doi.org/10.1243/09544054jem319

    Article  Google Scholar 

  19. Costa JD et al (2012) Fatigue behaviour of AA6082 friction stir welds under variable loadings. Int J Fatigue 37:8–16. https://doi.org/10.1016/j.ijfatigue.2011.10.001

    Article  CAS  Google Scholar 

  20. Deng C et al (2016) Effects of microstructural heterogeneity on very high cycle fatigue properties of 7050-T7451 aluminum alloy friction stir butt welds. Int J Fatigue 83:100–108. https://doi.org/10.1016/j.ijfatigue.2015.10.001

    Article  CAS  Google Scholar 

  21. Deng C et al (2017) Correlation between micro-mechanical property and very high cycle fatigue (VHCF) crack initiation in friction stir welds of 7050 aluminum alloy. Int J Fatigue 104:283–292. https://doi.org/10.1016/j.ijfatigue.2017.07.028

    Article  Google Scholar 

  22. Dickerson T (2003) Fatigue of friction stir welds in aluminium alloys that contain root flaws. Int J Fatigue 25:1399–1409. https://doi.org/10.1016/s0142-1123(03)00060-4

    Article  CAS  Google Scholar 

  23. Dilek M (2006) Mechanical properties of different aluminum alloys joined by friction stir welding. MA thesis. Master Thesis, Cukurova University, Instute of Natural and Applied Sciences

  24. Ericsson M (2003) Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG. Int J Fatigue 25:1379–1387. https://doi.org/10.1016/s0142-1123(03)00059-8

    Article  CAS  Google Scholar 

  25. Ericsson M (2005) Fatigue strength of friction stir welded joints in aluminium. QC 20101008. PhD thesis. KTH, Materials Technology, 68. ISBN: 91-7178-001-7

  26. Giorgi MD et al (2009) Effect of shoulder geometry on residual stress and fatigue properties of AA6082 fsw joints. J Mech Sci Technol 23:26–35. https://doi.org/10.1007/s12206-008-1006-4

    Article  Google Scholar 

  27. He C et al (2015) Fatigue crack initiation behaviors throughout friction stir welded joints in AA7075-T6 in ultrasonic fatigue. Int J Fatigue 81:171–178. https://doi.org/10.1016/j.ijfatigue.2015.07.012

    Article  CAS  Google Scholar 

  28. He C et al (2016) Through thickness property variations in friction stir welded AA6061 joint fatigued in very high cycle fatigue regime. Int J Fatigue 82:379–386. https://doi.org/10.1016/j.ijfatigue.2015.08.013

    Article  CAS  Google Scholar 

  29. Infante V et al (2016) Study of the fatigue behaviour of dissimilar aluminium joints produced by friction stir welding. Int J Fatigue 82:310–316. https://doi.org/10.1016/j.ijfatigue.2015.06.020

    Article  CAS  Google Scholar 

  30. Sonsino CM et al (1997) Charakterisierung von laser geschweißten Verbindungen aus der Sicht der Betriebsfestigkeit. LASER 2000. Qualifizierung von Laserverfahren. Arbeitsunterlagen zum 2. Statusseminar, 1–24 : Ill., Lit.

  31. Moreira PMGP, de Figueiredo MAV, de Castro PMST (2007) Fatigue behaviour of FSW and MIG weldments for two aluminium alloys. Theor Appl Fract Mech 48:169–177. https://doi.org/10.1016/j.tafmec.2007.06.001

    Article  CAS  Google Scholar 

  32. Nerman P (2003) Fatigue strength of mixed A1-joints performed with FSW. In: The 4th international FSW-conference in UTAH, USA, 2003

  33. Rodriguez RI et al (2016) Low-cycle fatigue of dissimilar friction stir welded aluminum alloys. Mater Sci Eng A 654:236–248. https://doi.org/10.1016/j.msea.2015.11.075

    Article  CAS  Google Scholar 

  34. Shahri MM, Höglund T, Sandström R (2012) Eurocode 9 to estimate the fatigue life of friction stir welded aluminium panels. Eng Struct 45:307–313. https://doi.org/10.1016/j.engstruct.2012.06.039

    Article  Google Scholar 

  35. Ranes M, Kluken AO, Midling OT (1996) Fatigue Properties of as-welded AA 6005 and AA 6082 aluminium alloys in T1 and TS temper condition. ASM International

  36. Haagensen PJ, Midling OT, Ranes M (1970) Fatigue performance of friction stir butt welds in a 6000 series aluminum alloy. WIT Transactions on Engineering Sciences 8

  37. Susmel L et al (2017) Multiaxial fatigue assessment of friction stir welded tubular joints of Al 6082-T6. Int J Fatig 101:282–296. https://doi.org/10.1016/j.ijfatigue.2016.08.010

    Article  CAS  Google Scholar 

  38. Uematsu Y et al (2009) Fatigue behaviour of friction stir welds without neither welding flash nor flaw in several aluminium alloys. Int J Fatigue 31:1443–1453. https://doi.org/10.1016/j.ijfatigue.2009.06.015

    Article  CAS  Google Scholar 

  39. Zhang T, He Y, Shao Q (2013) Comparative study on fatigue properties of friction stir welding joint and lap joint

  40. Sonsino CM et al (2002) Grundlagen für den Leichtbau energiesparender Nutzfahrzeuge auf Basis neuartiger Schweiß-und Auslegungsverfahren für Aluminiumkonstruktionen BMBF (MATECH)-Projekt. In: Förderkennzeichen 03N30479 Fraunhofer - Institut für Betriebsfestigkeit (LBF), Darmstadt LBF-Bericht

  41. Kulekci MK, Şik A, Kaluç E (2006) Effects of tool rotation and pin diameter on fatigue properties of friction stir welded lap joints. Int J Adv Manuf Technol 36:877–882. https://doi.org/10.1007/s00170-006-0901-z

    Article  Google Scholar 

  42. Fersini D, Pirondi A (2007) Fatigue behaviour of Al2024-T3 friction stir welded lap joints. Eng Fract Mech 74:468–480. https://doi.org/10.1016/j.engfracmech.2006.07.010

    Article  Google Scholar 

  43. Balakrishnan M et al (2018) Influence of pin imperfections on the tensile and fatigue behaviour of AA 7075-T6 friction stir lap welds. The International Journal of Advanced Manufacturing Technology, 1–11

  44. Krasnowski K (2014) Fatigue and static properties of friction stirwelded aluminium alloy 6082 lap joints using triflute-type and smooth tool. Arch Metall Mater 59:157–162. https://doi.org/10.2478/amm-2014-0025

    Article  CAS  Google Scholar 

  45. Reis L et al (2014) Fatigue behaviour of aluminium lap joints produced by laser beam and friction stirwelding. Procedia Eng 74:293–296. https://doi.org/10.1016/j.proeng.2014.06.265

    Article  CAS  Google Scholar 

  46. Xu X et al (2012) Microstructures and fatigue properties of friction stir lap welds in aluminum alloy AA6061-T6. Mater Des 35:175–183. https://doi.org/10.1016/j.matdes.2011.09.064

    Article  CAS  Google Scholar 

  47. Esme U, Külekci MK, Kazancoglu Y (2010) The use of artificial neural networks in predicting fatigue life of friction stir welded lap joints of AA 5754. J Adv Mater 42:14–21

    CAS  Google Scholar 

  48. Krasnowski K (2015) Technology of friction stir welding of aluminium alloy 6082 T-joints and their behaviour under static and dynamic loads. Materialwissenschaft und Werkstofftechnik 46:256–268. https://doi.org/10.1002/mawe.201400320

    Article  CAS  Google Scholar 

  49. Shahri MM, Sandström R (2010) Fatigue analysis of friction stir welded aluminium profile using critical distance. Int J Fatigue 32:302–309. https://doi.org/10.1016/j.ijfatigue.2009.06.019

    Article  CAS  Google Scholar 

  50. Störzel K et al (2011) Festigkeitskonzepte für schwingbelastete geschweißte Bauteile. Mater Test 53:418–426. https://doi.org/10.3139/120.110244

    Article  Google Scholar 

  51. Taylor D, Hoey D (2009) High cycle fatigue of welded joints: The TCD experience. International Journal of Fatigue 31. https://doi.org/10.1016/j.ijfatigue.2008.01.011

  52. Spindel J, Haibach E (1979) The method of maximum likelihood applied to the statistical analysis of fatigue data. Int J Fatigue 1:81–88. https://doi.org/10.1016/0142-1123(79)90012-4

    Article  Google Scholar 

  53. Fricke W (2012) IIW recommendations for the fatigue assessment of welded structures by notch stress analysis. Woodhead Publishing

  54. Neuber H (2001) Kerbspannungslehre. Springer, Berlin. https://doi.org/10.1007/978-3-642-56793-3

    Book  Google Scholar 

  55. Peterson RE (1959) Notch sensitivity. In: Sines G, Waisman JL (eds) Metal Fatigue. McGraw-Hill, pp 293–306

  56. Baumgartner J et al (2015) Fatigue assessment of welded joints using stress averaging and critical distance approaches. Welding in the World, 731–742. https://doi.org/10.1007/s40194-015-0248-x

Download references

Funding

The authors are grateful for the support from the Hessen State Ministry for Higher Education, Research and the Arts – Initiative for the Development of Scientific and Economic Excellence (LOEWE) towards conducting ALLEGRO project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mucci.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XIII - Fatigue of Welded Components and Structures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mucci, G., Bernhard, J., Baumgartner, J. et al. Fatigue assessment of laser beam and friction stir welded joints made of aluminium. Weld World 65, 611–621 (2021). https://doi.org/10.1007/s40194-020-01045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-020-01045-4

Keywords

Navigation