Skip to main content
Log in

Comparing the effect of electrode geometry on resistance spot welding of aluminum alloys between experimental results and numerical simulation

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

With the tightened emission limits the amount of aluminum sheets in future body-in-white concepts is on the rise. Thus, there is a need for optimizing the joining techniques to fulfill the upcoming challenges linked to high volume production. Especially the electrode life for resistance spot welding as a reliable and established process needs to improve. In order to do so the effect of electrode geometries on the electrode life is investigated. It is shown that the radius of curvature, the size of the face diameter, and the cone angle influences the electrode life. The reason for this behavior is explained by a numerical simulation developed by the TU Dresden. Based on these findings, an analysis with the purpose of investigating an improved electrode geometry is conducted. It is shown that a domed electrode with a radius of curvature of 150 mm should be used. This electrode combines the ability to crack the oxide layer effectively while ensuring a sufficient area of contact between electrode and sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kucza JC, Butruille JR, Hank E et al (1997) Aluminum as-rolled sheet for automotive applications—effect of surface oxide on resistance spot welding and adhesive bonding behavior. In: SAE International400 Commonwealth Drive, Warrendale, PA, United States

  2. DIN Deutsches Institut für Normung e.V. (2010) Resistance welding—spot welding electrode caps(DIN EN ISO 5821:2009)

  3. Hicken S (1997) Metallkundliche Untersuchungen zu Verschleißvorgängen an Elektroden beim Widerstandspunktschweißen von Aluminium. Techn. Hochsch., Diss.--Aachen, 1997, Als Ms. gedr. Aachener Berichte Fügetechnik, vol 97,5. Shaker, Aachen

  4. Hamm KJ (1989) Beitrag zur Qualitätssicherung durch Analyse des Widerstandspunktschweissprozesses beim Fügen von Aluminiumwerkstoffen. Techn. Hochsch., Diss.--Aachen, 1987. Schweißtechnische Forschungsberichte, vol 26. DVS-Verl., Düsseldorf

  5. Li Y, Wei Z, Li Y, Shen Q, Lin ZQ (2013) Effects of cone angle of truncated electrode on heat and mass transfer in resistance spot welding. Int J Heat Mass Transf 65:400–408. https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.012

    Article  Google Scholar 

  6. Leuschen B (1984) Beitrag zum Tragverhalten von Aluminium- und Aluminium/Stahl-Widerstandspunktschweißverbindungen bei verschiedenartiger Beanspruchung. Fotodruck J. Mainz GmbH

  7. Bowers RJ, Sorensen CD, Eagar TW (1990) Electrode geometry in resistance spot welding. Weld J (2):45–51

  8. Ikeda R, Yasuda K, Hashiguchi K et al (1995) Effect of electrode configuration on electrode life in resistance spot welding of galvannealed steel and aluminum alloy for car body sheets. Proc Adv Technol Process:144–151

  9. GSI SLV München (2004) Standmengenerhöhung beim Widerstandsschweißen durch Elektrodenfräsen. Schlussbericht

  10. Thornton M, Newton C, Keay B et al. (eds) (1996) Spot welding of aluminum sheet: a statistical approach to measuring the influence of different surfaces

    Google Scholar 

  11. Eichhorn F, Kunsmann A (1970) Tragverhalten von Punktschweißverbindungen an 1 bis 3 mm dicken Stahlblechen bei verschiedenartiger Beanspruchung, vol 58. Deutscher Verlag für Schweißtechnik, Düsseldorf

    Google Scholar 

  12. Ostermann F (2014) Anwendungstechnologie Aluminium, 3., neu bearb. Aufl. 2014. VDI-Buch. Springer, Berlin

    Google Scholar 

  13. Sigler DR, Carlson BE (2013) Improving aluminum resistance spot welding in automotive structures. Weld J (92):64–72

  14. Browne D, Newton C, Keay B (1996) Aluminum and steel resistance spot welding: modeling the differences. Adv Technol Process:50–57

  15. Kunze S, Hahn O (2014) Beitrag zur Erhöhung der Prozesssicherheit beim Punktschweißen und Punktschweißkleben von Aluminiumkarosseriewerkstoffen. Univ., Diss.--Paderborn, 2013. Berichte aus dem Laboratorium für Werkstoff- und Fügetechnik, vol 100. Shaker, Herzogenrath

  16. Carlson BE, Sigler DR (eds) (2013) Resistance spot welding of sheet, extruded and cast aluminium using the multi-ring domed electrode

  17. Heilmann S, Zwahr C, Knape A, Zschetzsche J, Lasagni AF, Füssel U (2018) Improvement of the electrical conductivity between electrode and sheet in spot welding process by direct laser interference patterning. Adv Eng Mater 114:1700755. https://doi.org/10.1002/adem.201700755

    Article  Google Scholar 

  18. Deutscher Verband für Schweißen und verwandte Verfahren e.V. (ed) (2013) Tagungsband 22.DVS-Sondertagung Widerstandsscheißen, Duisburg

  19. Florea RS, Solanki KN, Bammann DJ, Baird JC, Jordon JB, Castanier MP (2012) Resistance spot welding of 6061-T6 aluminum: failure loads and deformation. Mater Des 34:624–630

    Article  Google Scholar 

  20. DIN Deutsches Institut für Normung e.V. (2016) Resistance welding - Destructive testing of welds - Specimen dimensions and procedure for tensile shear testing resistance spot and embossed projection welds (DIN EN ISO 14273:2016–11)

  21. DIN Deutsches Institut für Normung e.V. (2004) Resistance welding - Procedures for determining the weldability lobe for resistance spot, projection and seam welding (DIN EN ISO 14327:2004–06)

  22. GSI SLV München (2011) Entwicklung eines geeigneten Elektrodenbearbeitungsverfahrens für das Widerstandspunktschweißen von Aluminiumwerkstoffen. Schlussbericht

  23. Rashid M (2008) Some influences of tribology in resistance spot welding of aluminum alloys

  24. Gesellschaft für Schweißtechnik International mbH (2011) Entwicklung eines geeigneten Elektrodenbearbeitungsverfahrens für das Widerstandspunktschweißen von Aluminiumwerkstoffen. DVS Bericht 5160/11

  25. Klages E, Voigt A (2012) Visualisierung der Temperaturentwicklung der Schweißelektroden über den gesamten zeitlichen Verlauf eines Punktschweißprozesses. Schweißen und Schneiden 64(10)

  26. Heilmann S, Mathiszik C, Merx M, Müller J, Zschetzsche J, Ihlenfeldt S, Füssel U (2016) Numerical simulation strategies and test setup for resistance spot welding process with motion overlay. Weld World 61:35–46. https://doi.org/10.1007/s40194-016-0403-z

    Article  Google Scholar 

  27. Wan Z, Wang H-P, Wang M, Carlson BE, Sigler DR (2016) Numerical simulation of resistance spot welding of Al to zinc-coated steel with improved representation of contact interactions. Int J Heat Mass Transf 101:749–763. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.023

    Article  Google Scholar 

  28. Wang B, Hua L, Wang X, Song Y, Liu Y (2015) Effects of electrode tip morphology on resistance spot welding quality of DP590 dual-phase steel. Int J Adv Manuf Technol 83:1917–1926. https://doi.org/10.1007/s00170-015-7703-0

    Article  Google Scholar 

  29. Hamedi M, Atashparva M (2017) A review of electrical contact resistance modeling in resistance spot welding. Weld World. 61:269–290. https://doi.org/10.1007/s40194-016-0419-4

    Article  Google Scholar 

  30. Sorpas 2D (2015) User Manual: Version 12

  31. Manladan SM, Yusof F, Ramesh S, Fadzil M, Luo Z, Ao S (2017) A review on resistance spot welding of aluminum alloys. Int J Adv Manuf Technol 90(1–4):605–634. https://doi.org/10.1007/s00170-016-9225-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Tuchtfeld.

Additional information

Recommended for publication by Commission III - Resistance Welding, Solid State Welding, and Allied Joining Process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuchtfeld, M., Heilmann, S., Füssel, U. et al. Comparing the effect of electrode geometry on resistance spot welding of aluminum alloys between experimental results and numerical simulation. Weld World 63, 527–540 (2019). https://doi.org/10.1007/s40194-018-00683-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-018-00683-z

Keywords

Navigation