Skip to main content
Log in

Metallurgical approach for the development of a hot crack-resistant metal-cored wire

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

During the last years, the automotive industry has striven to decrease the emission rates by raising combustion temperatures in the engine. As the exhaust temperature increases, this places higher demands on the exhaust system components and the filler metals used for welding. Due to the ever increasing requirements placed on welding efficiency, the use of metal-cored stainless steel wires continues to grow. High quality can be achieved at high welding speeds with minimum amount of rework, when these wires are used. As hot cracking can occur when welding high-temperature stainless steel grades, the weldability is restricted by the resistance to solidification cracking. Within the scope of this paper, two types of metal-cored wires with significant difference in δ-ferrite and manganese contents were compared to each other concerning hot crack susceptibility. Programmable Deformation Cracking and Modified Varestraint Transvarestraint tests were performed to determine the hot cracking liability. The wire with the higher amount of δ-ferrite showed better resistance than the wire with higher manganese content. Good weldability at high welding speed was confirmed by robotic welding. Additionally, the influence of the high temperature on the formation of σ-phase and its effect on the impact toughness was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wilken K, Kleistner H (1990) The classification and evaluation of hot cracking tests for weldments. Weld World 28(7–8):126–143

    Google Scholar 

  2. DIN EN ISO 17641–1 (2004) Destructive tests on welds in metallic materials—hot cracking tests for weldments—arc welding processes—part 1: general.

  3. Schnitzer R, Leitner M, Fiedler M, Stoschka M (2012) New developed filler metals for welding of high strength steels. Proceedings to the 2nd International Welding and Joining Technologies Congress and 19th Technical Welding Sessions, p 1–12

  4. Cross CE (2005) On the origin of weld solidification cracking, Hot cracking phenomena in welds. Springer-Verlag, Berlin Heidelberg, pp 3–18

    Google Scholar 

  5. Lippold JC, Kotecki DJ (2005) Welding metallurgy and weldability of stainless steels. John Wiley & Sons, Inc., Hoboken

    Google Scholar 

  6. Lippold J (2015) Welding metallurgy and weldability. John Wiley & Sons, Inc., Hoboken

    Book  Google Scholar 

  7. Shankar V, Gill TPS, Mannan SL, Sundaresan S (2003) Solidification cracking in austenitic stainless steel welds. Sadhana 28(3–4):359–382

    Article  Google Scholar 

  8. Borland JC (1960) Generalized theory of super-solidus cracking in welds and castings. Br Weld J 8:508–512

    Google Scholar 

  9. Matsuda F (1990) Solidification crack susceptility of weld metal. Recent trends in welding science and technology. ASM International, Metals Park, OH, pp 127–136

    Google Scholar 

  10. Kannengiesser T, Boellinghaus T (2014) Hot cracking tests—an overview of present technologies and applications. Weld World 58(3):397–421

    Article  Google Scholar 

  11. Prokhorov NN (1971) Fundamentals of the theory for technological strength of metals while crystallising during welding. Transaction of the Japan Welding Society 2(2):109–117

    Google Scholar 

  12. Rappaz M, Drezet JM, Gremaud M (1999) A new hot-tearing criterion. Metall Mater Trans A 30A:449–455

    Article  Google Scholar 

  13. Feurer U (1977) Influence of alloy composition and solidification conditions on dendrite arm spacing, feeding and hot tearing properties of aluminium alloys. Proceedings International Symposium on Engineering Alloys, Delft, The Netherlands: 131–145

  14. Kyriakongonas AP (2009) 3D Numerical Modeling of austenitic stainless steel 316L multipass butt welding and comparison with experimental results. Analysis and design of marine structures. CRC press, Boca Raton, p 371-378

  15. Rajasekhar K, Harendranath CS, Raman R, Kulkarni SD (1997) Microstructural evolution during solidification of austenitic stainless steel weld metals: a color metallographic and electron microprobe analysis study. Materials Characterisation 38:53–65

    Article  Google Scholar 

  16. Saluja R, Moeed KM (2012) The emphasis of phase transformations and alloying constitutents on hot cracking susceptibility of type 304L and 316L stainless steel welds. IJEST 4(5):2203–2215

    Google Scholar 

  17. Ferrandini PL, Rios CT, Dutra AT, Jaime MA, Mei PR, Caram R (2006) Solute segregation and microstructure of directionally solidified austenitic stainless steel. Mater Sci Eng A 435-436:139–144

    Article  Google Scholar 

  18. Folkhard E (1988) Welding metallurgy of stainless steels. Springer-Verlag, Wien

    Book  Google Scholar 

  19. Krafka H (2000) Risse in Schweißverbindungen: Heißrissarten, Heißrissentstehung und Heißrissprüfung. Deutscher Verband für Materialforschung und -prüfung e.V., DVM-Bericht 232, Berlin

  20. Tösch J, Schabereiter H (1977) Einfluss der Schweißverbindungen auf den Ferritgehalt und die Heißrissanfälligkeit austenitischer Schweißgutlegierungen. Sonderdruck aus Jubiläumsschrift „50 Jahre Böhler-Schweißtechnik“

  21. Perteneder E, Rabensteiner G, Schabereiter H, Tösch J (1979) Einfluss der Primärkristallisation und des Deltaferrits auf das Heißrissverhalten austenitischen Cr-Ni-Schweißgutes. Sonderdruck aus der Schweißtechnik 3:33–39

  22. Pellini WS (1952) Strain theory of hot tearing. Foundry 80:125–199

    Google Scholar 

  23. Hull CF (1999) Effects of alloying additions on hot cracking of austenitic chromiumnickel stainless steels. Proceedings American Society Testing Materials 60:667–690

    Google Scholar 

  24. Kakhovskii NI et al (1971) Effects of silicon, nitrogen and manganese on chemical heterogeneity in type 0Kh23N28M3D3T weld metals and their resistance to hot cracking. Weld metals and their resistance to hot cracking. Avtomatich Svarka 8:11–14

    Google Scholar 

  25. Nakagawa H, Matsuda F, Senda T (1974) Effect of sulfur on solidification cracking in weld metal of steel (report 1). Trans Japan Welding Soc 5(1):39–46

    Google Scholar 

  26. Nakagawa H, Matsuda F, Senda T (1974) Effect of sulfur on solidification cracking in weld metal of steel (report 2). Trans Japan Welding Soc 5(2):84–89

    Google Scholar 

  27. Lancaster JF (1999) The metallurgy of welding, 6th edn. Abington Publishing, Cambridge

    Book  Google Scholar 

  28. Schulze G (2010) Die Metallurgie des Schweißens. Springer Verlag, Berlin Heidelberg, p 422

  29. Kotecki DJ, Siewert TA WRC-1992 constitution diagram for stainless steel weld metals: a modification of the WRC-1988 diagram. Weld J 71(5):171–178 Calculations: http://www.migweld.de/english/service/welding-stainless-steels/wrc-diagram-for-standard-analysis.html (October 2013)

  30. Long CJ, DeLong WT The ferrite content of austenitic stainless steel weld metal. Weld J 52(7):281–297 Calculations: http://www.migweld.de/english/service/welding-stainless-steels/de-long-diagram-for-range-of-standard-analysis.html (October 2013)

  31. Rabensteiner G, Tösch J, Schabereiter H (1980) Heißrissuntersuchungen an chemisch beständigen Schweißgütern mit dem neu entwickelten PVR Test. Sonderdruck aus der Schweißtechnik 12:213–217

    Google Scholar 

  32. Folkhard E, Rabensteiner G, Schabereiter H, Fuchs K, Tösch J (1977) Der PVR-Test, ein neues Verfahren zur Ermittlung der Risssicherheit von Schweißwerkstoffen mit hoher quantitativer Aussagekraft. Jubiläumsschrift „50 Jahre Böhler Schweißtechnik“, Kapfenberg

  33. Heuser H (2005) Value of different hot cracking tests for the manufacturer of filler metals, Hot cracking phenomena in welds. Springer-Verlag, Berlin Heidelberg, pp 305–327

    Google Scholar 

  34. Herold H, Pchennikov A, Streitenberger M (2005) Influence of the deformation rate of different tests on hot cracking formation, Hot cracking phenomena in welds. Springer-Verlag, Berlin Heidelberg, pp 328–346

    Google Scholar 

  35. Vallant R (2005) The influence of different Nb-contents on the hot cracking susceptibility of Ni-base weld metals type 70/20, Hot cracking phenomena in welds. Springer-Verlag, Berlin Heidelberg, pp 141–164

    Google Scholar 

  36. Wilken K (1999) Investigation to compare hot cracking tests—externally loaded specimen. IIW document: IX-1945-99

  37. Herold H, Streitenberger M, Pchennikov A (2001) Modelling of the PVR test to examine the origin of different hot cracking types, Mathematical modelling of weld phenomena 5. Inst Metals, London, pp 783–792

  38. Gollnow C (2015) Beitrag zur Ermittlung vorrangig konstruktiver Einflussgrößen auf die Heißrissinitiierung an geschweißten Bauteilen. Dissertation bam Berlin

  39. Keil D, Zinke M, Pries H (2011) Investigations on hot cracking of novel high manganese TWIP-steels, Hot cracking phenomena in welds III. Springer-Verlag, Berlin Heidelberg, pp 209–223

    Google Scholar 

  40. Presoly P, Bernhard C, Pierer R (2013) Identification of defect prone peritectic steel grades by analyzing high-temperature phase transformations. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 44:5377–5388

    Article  Google Scholar 

  41. Kujanpaa V, Suutala N, Takalo T, Moisio T (1979) Correlation between solidification cracking and microstructure in austenitic and austenitic-ferritic stainless steel welds. Welding Research International 9(2):55–75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Holly.

Additional information

Recommended for publication by Commission II - Arc Welding and Filler Metals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holly, S., Schnitzer, R., Posch, G. et al. Metallurgical approach for the development of a hot crack-resistant metal-cored wire. Weld World 61, 423–434 (2017). https://doi.org/10.1007/s40194-017-0442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-017-0442-0

Keywords (IIW Thesaurus)

Navigation