Skip to main content
Log in

Nd:YAG laser welding of Ti-27 at.% Nb shape memory alloys

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

A Nd:YAG laser welding technique with varying pulse widths was employed to weld Ti-27 at.% Nb shape memory alloy plates, and subsequent phase transformation characteristics and microhardness of welds were systematically investigated. From microstructure observation, it is apparent that weld seams contain a columnar growth with the low pulse and transferred into a combined growth of columnar and planar with the high pulse width. Moreover, grains in the weld zone exhibited a finer size when compared to the unwelded zone. A small amount of NbTi4 was also found in the welds. In the forward transformation, transformation temperatures did not exhibit peaks, indicating the same behaviour as the original TiNb alloy. Microhardness of the TiNb welds increased as the pulse width increased when compared to the original TiNb alloy. However, little reduction in hardness occurred after a pulse width of 5 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baxevanis T, Lagoudas DC (2015) Fracture mechanics of shape memory alloys: review and perspectives. Int J Fract 191:191–213. doi:10.1007/s10704-015-9999-z

    Article  Google Scholar 

  2. Wang L, Lu W, Qin J, et al. (2010) The characterization of shape memory effect for low elastic modulus biomedical β-type titanium alloy. Mater Charact 61:535–541. doi:10.1016/j.matchar.2010.02.009

    Article  Google Scholar 

  3. Rondelli G (1996) Corrosion resistance tests on NiTi shape memory alloy. Biomaterials 17:2003–2008. doi:10.1016/0142-9612(95)00352-5

    Article  Google Scholar 

  4. Geurtsen W (2002) Biocompatibility of dental casting alloys. Crit Rev Oral Biol Med 13:71–84. doi:10.1177/154411130201300108

    Article  Google Scholar 

  5. Pulletikurthi C, Munroe N, Gill P, et al. (2011) Cytotoxicity of Ni from surface-treated porous nitinol (PNT) on osteoblast cells. J Mater Eng Perform 20:824–829. doi:10.1007/s11665-011-9930-3

    Article  Google Scholar 

  6. Michiardi A, Aparicio C, Planell JA, Gil FJ (2006) New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J Biomed Mater Res - Part B Appl Biomater 77:249–256. doi:10.1002/jbm.b.30441

    Article  Google Scholar 

  7. Ping DH, Cui CY, Yin FX, Yamabe-Mitarai Y (2006) TEM investigations on martensite in a Ti-Nb-based shape memory alloy. Scr Mater 54:1305–1310. doi:10.1016/j.scriptamat.2005.12.022

    Article  Google Scholar 

  8. Cremasco A, Andrade PN, Contieri RJ, et al. (2011) Correlations between aging heat treatment, ω phase precipitation and mechanical properties of a cast Ti–Nb alloy. Mater Des 32:2387–2390

    Article  Google Scholar 

  9. Kim JI, Kim HY, Inamura T, et al. (2005) Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys. Mater Sci Eng A 403:334–339. doi:10.1016/j.msea.2005.05.050

    Article  Google Scholar 

  10. Baker C (1971) The shape-memory effect in a titanium-35 wt.-% niobium alloy. Met Sci 5:92–100. doi:10.1179/030634571790439658

    Article  Google Scholar 

  11. Al-Zain Y, Kim HY, Hosoda H, et al. (2010) Shape memory properties of Ti-Nb-Mo biomedical alloys. Acta Mater 58:4212–4223. doi:10.1016/j.actamat.2010.04.013

    Article  Google Scholar 

  12. Wen M, Wen C, Hodgson P, Li Y (2014) Fabrication of Ti-Nb-Ag alloy via powder metallurgy for biomedical applications. Mater Des 56:629–634. doi:10.1016/j.matdes.2013.11.066

    Article  Google Scholar 

  13. Farooq MU, Khalid FA, Zaigham H, Abidi IH (2014) Superelastic behaviour of Ti-Nb-Al ternary shape memory alloys for biomedical applications. Mater Lett 121:58–61. doi:10.1016/j.matlet.2014.01.148

    Article  Google Scholar 

  14. Fukui Y, Inamura T, Hosoda H, et al. (2004) Mechanical properties of a Ti-Nb-Al shape memory alloy. Mater Trans 45:1077–1082. doi:10.2320/matertrans.45.1077

    Article  Google Scholar 

  15. Hassan MR, Mehrpouya M, Dawood S (2014) Review of the machining difficulties of nickel-titanium based shape memory alloys. 564:533–537. doi: 10.4028/www.scientific.net/AMM.564.533

  16. Weinert K, Petzoldt V (2004) Machining of NiTi based shape memory alloys. Mater Sci Eng A 378:180–184. doi:10.1016/j.msea.2003.10.344

    Article  Google Scholar 

  17. Eijk Van Der C, Fostervoll H, Sallom ZK, Akselsen OM (2003) Plasma welding of NiTi to NiTi, stainless steel and hastelloy C276. Solutions 13–15.

  18. Delobelle V, Delobelle P, Liu Y, et al. (2013) Resistance welding of NiTi shape memory alloy tubes. J Mater Process Technol 213:1139–1145. doi:10.1016/j.jmatprotec.2013.01.013

    Article  Google Scholar 

  19. Shinoda T, Owa T, Magula V (1999) Microstructural analysis of friction welded joints in TiNi alloy microstructural analysis of friction welded joints in TiNi alloy. Weld Int 13:180–18541. doi:10.1080/09507119909447361

    Article  Google Scholar 

  20. Shiue RH, Wu SK (2006) Infrared brazing of Ti50Ni50 shape memory alloy using two Ag–Cu–Ti active braze alloys. Intermetallics 14:630–638. doi:10.1016/j.intermet.2005.10.012

    Article  Google Scholar 

  21. van der Eijk C, Sallom ZK, Akselsen OM (2008) Microwave brazing of NiTi shape memory alloy with Ag–Ti and Ag–Cu–Ti alloys. Scr Mater 58:779–781. doi:10.1016/j.scriptamat.2007.12.017

    Article  Google Scholar 

  22. Hahnlen R, Fox G, Dapino M (2012) Ultrasonic soldering of shape memory NiTi to aluminum 2024. Weld J 91:1–7

    Google Scholar 

  23. Yang D, Jiang HC, Zhao MJ, Rong LJ (2014) Microstructure and mechanical behaviors of electron beam welded NiTi shape memory alloys. Mater Des 57:21–25. doi:10.1016/j.matdes.2013.12.039

    Article  Google Scholar 

  24. Oliveira JP, Barbosa D, Fernandes FMB, Miranda RM (2016) Tungsten inert gas ( TIG ) welding of Ni-rich NiTi plates : functional behavior. Smart Mater Struct 25:03LT01. doi:10.1088/0964-1726/25/3/03LT01

    Article  Google Scholar 

  25. Oliveira JP, Miranda RM, Schell N, Fernandes FMB (2016) High strain and long duration cycling behavior of laser welded NiTi sheets. Int J Fatigue 83:195–200. doi:10.1016/j.ijfatigue.2015.10.013

    Article  Google Scholar 

  26. Oliveira JP, Panton B, Zeng Z, et al. (2016) Laser welded superelastic Cu-Al-Mn shape memory alloy wires. Mater Des 90:122–128. doi:10.1016/j.matdes.2015.10.125

    Google Scholar 

  27. Fukumoto S, Inoue T, Mizuno S, et al. (2010) Friction welding of TiNi alloy to stainless steel using Ni interlayer. Sci Technol Weld Join 15:124–130. doi:10.1179/136217109X12577814486692

    Article  Google Scholar 

  28. Li H, Sun D, Cai X, et al. (2013) Laser welding of TiNi shape memory alloy and stainless steel using Co filler metal. Opt Laser Technol 45:453–460. doi:10.1016/j.optlastec.2012.06.010

    Article  Google Scholar 

  29. GONG W, CHEN Y, KE L (2011) Microstructure and properties of laser micro welded joint of TiNi shape memory alloy. Trans Nonferrous Met Soc China 21:2044–2048. doi:10.1016/S1003-6326(11)60970-9

    Article  Google Scholar 

  30. Chan CW, Man HC (2011) Laser welding of thin foil nickeltitanium shape memory alloy. Opt Lasers Eng 49:121–126. doi:10.1016/j.optlaseng.2010.08.007

    Article  Google Scholar 

  31. Kobayashi S, Nakagawa S, Nakai K, Ohmori Y (2002) Phase decomposition in a Ti-13Nb-13Zr alloy during aging at 600. DEG. C. Mater Trans 43:2956–2963

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Higher Education of Malaysia and Universiti Teknologi Malaysia for providing the financial support under the University Research Grant No. Q.J130000.3024.00M57 and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Hamzah.

Additional information

Recommended for publication by Commission IV - Power Beam Processes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahador, A., Saud, S.N., Hamzah, E. et al. Nd:YAG laser welding of Ti-27 at.% Nb shape memory alloys. Weld World 60, 1133–1139 (2016). https://doi.org/10.1007/s40194-016-0375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-016-0375-z

Keywords (IIW Thesaurus)

Navigation