Skip to main content

Advertisement

Log in

Monitoring Depth of Neuromuscular Blockade and Adequacy of Reversal: Clinical and Pharmacoeconomic Implications

  • Neuromuscular Blockade (CA Lien, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes current evidence on best practice management of neuromuscular blocking agents (NMBAs). Furthermore, the pharmacoeconomic implications of neuromuscular blockade and reversal to support clinicians and policymakers in ensuring improved patient outcomes and cost-efficient healthcare delivery are discussed.

Recent Findings

There is good evidence supporting a dose-dependent relationship between NMBAs, residual paralysis, and postoperative respiratory complications. The implementation of sugammadex provoked practice changes, but studies are ambiguous on whether the reversal agent reduces neuromuscular blockade-associated complications compared to neostigmine. Current literature supports reversal with sugammadex or neostigmine depending on the degree of residual paralysis and guided by quantitative neuromuscular monitoring.

Summary

Best-practice management of neuromuscular blockade targets avoidance of residual paralysis through (1) utilizing the lowest possible dose of NMBAs; (2) quantitative monitoring of neuromuscular blockade; and (3) ensuring adequacy of recovery or reversal with a train of four-ratio ≥0.95 prior to extubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Weiser TG, Haynes AB, Molina G, Lipsitz SR, Esquivel MM, Uribe-Leitz T, et al. Estimate of the global volume of surgery in 2012: an assessment supporting improved health outcomes. Lancet. 2015;385(Suppl 2):S11. https://doi.org/10.1016/S0140-6736(15)60806-6.

    Article  PubMed  Google Scholar 

  2. Dobson GP. Trauma of major surgery: a global problem that is not going away. Int J Surg. 2020;81:47–54. https://doi.org/10.1016/j.ijsu.2020.07.017.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boon M, Martini C, Dahan A. Recent advances in neuromuscular block during anesthesia. F1000Res. 2018;7:167. https://doi.org/10.12688/f1000research.13169.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Koo BW, Oh AY, Na HS, Lee HJ, Kang SB, Kim DW, et al. Effects of depth of neuromuscular block on surgical conditions during laparoscopic colorectal surgery: a randomised controlled trial. Anaesthesia. 2018;73:1090–6. https://doi.org/10.1111/anae.14304.

    Article  CAS  PubMed  Google Scholar 

  5. Mencke T, Echternach M, Kleinschmidt S, Lux P, Barth V, Plinkert PK, et al. Laryngeal morbidity and quality of tracheal intubation: a randomized controlled trial. Anesthesiology. 2003;98:1049–56. https://doi.org/10.1097/00000542-200305000-00005.

    Article  CAS  PubMed  Google Scholar 

  6. Neuromuscular blockade drugs market – global industry trends and forecast to 2030. Data Bridge Market Research. https://www.databridgemarketresearch.com/reports/global-neuromuscular-blockade-drugs-market. Accessed 24 July 2023

  7. D’Souza RS, Porter BR, Johnson RL. Nondepolarizing paralytics. Treasure Island (FL): StatPearls Publishing; 2023.

    Google Scholar 

  8. Harroun P, Beckert FE, Fisher CW. The physiologic effects of curare and its use as an adjunct to anesthesia. Surg Gynecol Obstet. 1947;84:491–8.

    CAS  PubMed  Google Scholar 

  9. Murphy GS, Brull SJ. Residual neuromuscular block: lessons unlearned. Part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg. 2010;111:120–8. https://doi.org/10.1213/ANE.0b013e3181da832d.

    Article  PubMed  Google Scholar 

  10. El-Orbany MI, Joseph NJ, Salem MR, Klowden AJ. The neuromuscular effects and tracheal intubation conditions after small doses of succinylcholine. Anesth Analg. 2004;98:1680–5. https://doi.org/10.1213/01.ANE.0000112315.58441.50.

    Article  CAS  PubMed  Google Scholar 

  11. Luo L-L, Huang W, Zhou L-X, Wang J, Xu L, Li P. Optimal dose of succinylcholine for tracheal intubation in patients during inhalation induction with sevoflurane: a randomized controlled trial. J Clin Anesth. 2014;26:557–62. https://doi.org/10.1016/j.jclinane.2014.03.014.

    Article  CAS  PubMed  Google Scholar 

  12. Mirzakhani H, Guchelaar H-J, Welch CA, Cusin C, Doran ME, MacDonald TO, et al. Minimum effective doses of succinylcholine and rocuronium during electroconvulsive therapy: a prospective, randomized, crossover trial. Anesth Analg. 2016;123:587. https://doi.org/10.1213/ANE.0000000000001218.

    Article  CAS  PubMed  Google Scholar 

  13. •• Schaefer MS, Hammer M, Santer P, Grabitz SD, Patrocinio M, Althoff FC, et al. Succinylcholine and postoperative pulmonary complications: a retrospective cohort study using registry data from two hospital networks. Br J Anaesth. 2020;125:629–36. https://doi.org/10.1016/j.bja.2020.05.059. This study highlights the increased risk of postoperative pulmonary complications in patients receiving succinylcholine.

    Article  CAS  PubMed  Google Scholar 

  14. •• Blobner M, Hunter JM. Another nail in the coffin of succinylcholine? Br J Anaesth. 2020;125:423–5. https://doi.org/10.1016/j.bja.2020.06.025. Editorial discussing the aforementioned study and emphasizing the trends of decreased use of succinylcholine.

    Article  PubMed  Google Scholar 

  15. Guihard B, Chollet-Xémard C, Lakhnati P, Vivien B, Broche C, Savary D, et al. Effect of rocuronium vs succinylcholine on endotracheal intubation success rate among patients undergoing out-of-hospital rapid sequence intubation: a randomized clinical trial. JAMA. 2019;322:2303–12. https://doi.org/10.1001/jama.2019.18254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hager HH, Burns B. Succinylcholine chloride. StatPearls, Treasure Island (FL): StatPearls Publishing; 2023.

    Google Scholar 

  17. Martyn JAJ, Richtsfeld M, Warner DO. Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. Anesthesiology. 2006;104:158–69. https://doi.org/10.1097/00000542-200601000-00022.

    Article  CAS  PubMed  Google Scholar 

  18. Baraka A. Severe bradycardia following propofol-suxamethonium sequence. Br J Anaesth. 1988;61:482–3. https://doi.org/10.1093/bja/61.4.482.

    Article  CAS  PubMed  Google Scholar 

  19. Zimmerman AA, Funk KJ, Tidwell JL. Propofol and alfentanil prevent the increase in intraocular pressure caused by succinylcholine and endotracheal intubation during a rapid sequence induction of anesthesia. Anesth Analg. 1996;83:814.

    Article  CAS  PubMed  Google Scholar 

  20. Muravchick S, Burkett L, Gold MI. Succinylcholine-induce fasciculations and intragastric pressure during induction of anesthesia. Anesthesiology. 1981;55:180–3. https://doi.org/10.1097/00000542-198108000-00015.

    Article  CAS  PubMed  Google Scholar 

  21. Minton MD, Grosslight K, Stirt JA, Bedford RF. Increases in intracranial pressure from succinylcholine: prevention by prior nondepolarizing blockade. Anesthesiology. 1986;65:165–9. https://doi.org/10.1097/00000542-198608000-00006.

    Article  CAS  PubMed  Google Scholar 

  22. Litman RS, Griggs SM, Dowling JJ, Riazi S. Malignant hyperthermia susceptibility and related diseases. Anesthesiology. 2018;128:159–67. https://doi.org/10.1097/ALN.0000000000001877.

    Article  PubMed  Google Scholar 

  23. Larach MG, Klumpner TT, Brandom BW, Vaughn MT, Belani KG, Herlich A, et al. Succinylcholine use and dantrolene availability for malignant hyperthermia treatment: database analyses and systematic review. Anesthesiology. 2019;130:41–54. https://doi.org/10.1097/ALN.0000000000002490.

    Article  CAS  PubMed  Google Scholar 

  24. •• Kirmeier E, Eriksson LI, Lewald H, Jonsson Fagerlund M, Hoeft A, Hollmann M, et al. Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): a multicentre, prospective observational study. Lancet Respir Med. 2019;7:129–40. https://doi.org/10.1016/S2213-2600(18)30294-7. Large multicentric study reporting on higher risks of postoperative pulmonary complications in patients receiving neuromuscular blocking agents.

    Article  PubMed  Google Scholar 

  25. Andersson ML, Møller AM, Wildgaard K. Butyrylcholinesterase deficiency and its clinical importance in anaesthesia: a systematic review. Anaesthesia. 2019;74:518–28. https://doi.org/10.1111/anae.14545.

    Article  CAS  PubMed  Google Scholar 

  26. Hospital readmissions reduction program (HRRP). Centers for Medicare and Medicaid Services (CMS). https://www.cms.gov/medicare/medicare-fee-for-service-payment/acuteinpatientpps/readmissions-reduction-program. Accessed 24 July 2023

  27. Overview of clinical conditions with frequent and costly hospital readmissions by payer. Agency for Healthcare Research and Quality. https://hcup-us.ahrq.gov/reports/statbriefs/sb278-Conditions-Frequent-Readmissions-By-Payer-2018.jsp. Accessed 24 July 2023

  28. Wachtendorf LJ, Schaefer MS, Santer P, Azimaraghi O, Obeidat SS, Friedrich S, et al. Association between preoperative administration of gabapentinoids and 30-day hospital readmission: a retrospective hospital registry study. J Clin Anesth. 2021;73:110376. https://doi.org/10.1016/j.jclinane.2021.110376.

    Article  CAS  PubMed  Google Scholar 

  29. Fawcett WJ. Suxamethonium or rocuronium for rapid sequence induction of anaesthesia? BJA Educ. 2019;19:380–2. https://doi.org/10.1016/j.bjae.2019.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Madsen MV, Scheppan S, Mørk E, Kissmeyer P, Rosenberg J, Gätke MR. Influence of deep neuromuscular block on the surgeonś assessment of surgical conditions during laparotomy: a randomized controlled double blinded trial with rocuronium and sugammadex. Br J Anaesth. 2017;119:435–42. https://doi.org/10.1093/bja/aex241.

    Article  CAS  PubMed  Google Scholar 

  31. Martini CH, Boon M, Bevers RF, Aarts LP, Dahan A. Evaluation of surgical conditions during laparoscopic surgery in patients with moderate vs deep neuromuscular block. Br J Anaesth. 2014;112:498–505. https://doi.org/10.1093/bja/aet377.

    Article  CAS  PubMed  Google Scholar 

  32. • Althoff FC, Xu X, Wachtendorf LJ, Shay D, Patrocinio M, Schaefer MS, et al. Provider variability in the intraoperative use of neuromuscular blocking agents: a retrospective multicentre cohort study. BMJ Open. 2021;11:e048509. https://doi.org/10.1136/bmjopen-2020-048509. Recent study showing a wide variability in the use of neuromuscular blocking agents across clinicians.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mertes PM, Alla F, Tréchot P, Auroy Y, Jougla E. Groupe d’Etudes des Réactions Anaphylactoïdes Peranesthésiques. Anaphylaxis during anesthesia in France: an 8-year national survey. J Allergy Clin Immunol. 2011;128:366–73. https://doi.org/10.1016/j.jaci.2011.03.003.

    Article  PubMed  Google Scholar 

  34. Sadleir PHM, Clarke RC, Goddard CE, Day C, Weightman W, Middleditch A, et al. Relationship of perioperative anaphylaxis to neuromuscular blocking agents, obesity, and pholcodine consumption: a case-control study. Br J Anaesth. 2021;126:940–8. https://doi.org/10.1016/j.bja.2020.12.018.

    Article  CAS  PubMed  Google Scholar 

  35. Takazawa T, Mitsuhata H, Mertes PM. Sugammadex and rocuronium-induced anaphylaxis. J Anesth. 2016;30:290–7. https://doi.org/10.1007/s00540-015-2105-x.

    Article  PubMed  Google Scholar 

  36. Sadleir PHM, Clarke RC, Bunning DL, Platt PR. Anaphylaxis to neuromuscular blocking drugs: incidence and cross-reactivity in Western Australia from 2002 to 2011. Br J Anaesth. 2013;110:981–7. https://doi.org/10.1093/bja/aes506.

    Article  CAS  PubMed  Google Scholar 

  37. Claudius C, Garvey LH, Viby-Mogensen J. The undesirable effects of neuromuscular blocking drugs. Anaesthesia. 2009;64(Suppl 1):10–21. https://doi.org/10.1111/j.1365-2044.2008.05866.x.

    Article  CAS  PubMed  Google Scholar 

  38. •• Blobner M, Hunter JM, Meistelman C, Hoeft A, Hollmann MW, Kirmeier E, et al. Use of a train-of-four ratio of 0.95 versus 0.9 for tracheal extubation: an exploratory analysis of POPULAR data. Br J Anaesth. 2020;124:63–72. https://doi.org/10.1016/j.bja.2019.08.023. Secondary analysis of a large multi-centric study (described above), which shows that a train of four-ratio (TOF-ratio)>0.95 decreases the risk of postoperative pulmonary complications compared to a TOF-ratio>0.9.

    Article  PubMed  Google Scholar 

  39. Naguib M, Brull SJ, Kopman AF, Hunter JM, Fülesdi B, Arkes HR, et al. Consensus statement on perioperative use of neuromuscular monitoring. Anesth Analg. 2018;127:71–80. https://doi.org/10.1213/ANE.0000000000002670.

    Article  PubMed  Google Scholar 

  40. Heier T, Caldwell JE, Feiner JR, Liu L, Ward T, Wright PMC. Relationship between normalized adductor pollicis train-of-four ratio and manifestations of residual neuromuscular block: a study using acceleromyography during near steady-state concentrations of mivacurium. Anesthesiology. 2010;113(4):825–32. https://doi.org/10.1097/ALN.Ob013e3181ebddca.

    Article  PubMed  Google Scholar 

  41. Murphy GS, Szokol JW, Avram MJ, Greenberg SB, Shear T, Vender JS, et al. Postoperative residual neuromuscular blockade is associated with impaired clinical recovery. Anesth Analg. 2013;117:133–41. https://doi.org/10.1213/ANE.0b013e3182742e75.

    Article  PubMed  Google Scholar 

  42. Baumüller E, Schaller SJ, Chiquito Lama Y, Frick CG, Bauhofer T, Eikermann M, et al. Postoperative impairment of motor function at train-of-four ratio ≥0.9 cannot be improved by sugammadex (1 mg kg-1). Br J Anaesth. 2015;114:785–93. https://doi.org/10.1093/bja/aeu453.

    Article  CAS  PubMed  Google Scholar 

  43. Pietraszewski P, Gaszyński T. Residual neuromuscular block in elderly patients after surgical procedures under general anaesthesia with rocuronium. Anaesthesiol Intensive Ther. 2013;45:77–81. https://doi.org/10.5603/AIT.2013.0017.

    Article  PubMed  Google Scholar 

  44. •• Togioka BM, Xu X, Banner-Goodspeed V, Eikermann M. Does sugammadex reduce postoperative airway failure? Anesth Analg. 2020;131:137–40. https://doi.org/10.1213/ANE.0000000000004739. Editorial summarizing the findings of a study on sugammadex versus neostigmine using an interrupted-time series design to examine the effects on postoperative airway failure.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Herbstreit F, Peters J, Eikermann M. Impaired upper airway integrity by residual neuromuscular blockade: increased airway collapsibility and blunted genioglossus muscle activity in response to negative pharyngeal pressure. Anesthesiology. 2009;110:1253–60. https://doi.org/10.1097/ALN.0b013e31819faa71.

    Article  PubMed  Google Scholar 

  46. Eikermann M, Vogt FM, Herbstreit F, Vahid-Dastgerdi M, Zenge MO, Ochterbeck C, et al. The predisposition to inspiratory upper airway collapse during partial neuromuscular blockade. Am J Respir Crit Care Med. 2007;175:9–15. https://doi.org/10.1164/rccm.200512-1862OC.

    Article  PubMed  Google Scholar 

  47. Cedborg AIH, Sundman E, Bodén K, Hedström HW, Kuylenstierna R, Ekberg O, et al. Pharyngeal function and breathing pattern during partial neuromuscular block in the elderly: effects on airway protection. Anesthesiology. 2014;120:312–25. https://doi.org/10.1097/ALN.0000000000000043.

    Article  CAS  PubMed  Google Scholar 

  48. •• Shay D, Wongtangman K, Eikermann M, Schaefer MS. The effects of acetylcholinesterase inhibitors on morbidity after general anesthesia and surgery. Neuropharmacology. 2020;173:108134. https://doi.org/10.1016/j.neuropharm.2020.108134. A comprehensive recent review on the risks and benefits of neostigmine use in surgical patients.

    Article  CAS  PubMed  Google Scholar 

  49. Eriksson LI, Sundman E, Olsson R, Nilsson L, Witt H, Ekberg O, et al. Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans: simultaneous videomanometry and mechanomyography of awake human volunteers. Anesthesiology. 1997;87:1035–43. https://doi.org/10.1097/00000542-199711000-00005.

    Article  CAS  PubMed  Google Scholar 

  50. Sundman E, Witt H, Olsson R, Ekberg O, Kuylenstierna R, Eriksson LI. The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans: pharyngeal videoradiography and simultaneous manometry after atracurium. Anesthesiology. 2000;92:977–84. https://doi.org/10.1097/00000542-200004000-00014.

    Article  CAS  PubMed  Google Scholar 

  51. Mandell LA, Niederman MS. Aspiration pneumonia. N Engl J Med. 2019;380:651–63. https://doi.org/10.1056/NEJMra1714562.

    Article  CAS  PubMed  Google Scholar 

  52. Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP. Pathophysiology of sleep apnea. Physiol Rev. 2010;90:47–112. https://doi.org/10.1152/physrev.00043.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang X, Li Y, Huang C, Xiong W, Zhou Q, Niu L, et al. Recovery of early postoperative muscle strength after deep neuromuscular block by means of ultrasonography with comparison of neostigmine versus sugammadex as reversal drugs: study protocol for a randomised controlled trial. BMJ Open. 2021;11:e043935. https://doi.org/10.1136/bmjopen-2020-043935.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kryger MH. Chapter 94 - Restrictive lung disorders. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 4th ed. Philadelphia: W.B. Saunders; 2005.

    Google Scholar 

  55. Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg. 2008;107:130–7. https://doi.org/10.1213/ane.0b013e31816d1268.

    Article  PubMed  Google Scholar 

  56. Grosse-Sundrup M, Henneman JP, Sandberg WS, Bateman BT, Uribe JV, Nguyen NT, et al. Intermediate acting non-depolarizing neuromuscular blocking agents and risk of postoperative respiratory complications: prospective propensity score matched cohort study. BMJ. 2012;345:e6329. https://doi.org/10.1136/bmj.e6329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McLean DJ, Diaz-Gil D, Farhan HN, Ladha KS, Kurth T, Eikermann M. Dose-dependent association between intermediate-acting neuromuscular-blocking agents and postoperative respiratory complications. Anesthesiology. 2015;122:1201–13. https://doi.org/10.1097/ALN.0000000000000674.

    Article  CAS  PubMed  Google Scholar 

  58. Hammer M, Santer P, Schaefer MS, Althoff FC, Wongtangman K, Frey UH, et al. Supraglottic airway device versus tracheal intubation and the risk of emergent postoperative intubation after general anaesthesia in adults: a retrospective cohort study. Br J Anaesth. 2021;126:738–45. https://doi.org/10.1016/j.bja.2020.10.040.

    Article  CAS  PubMed  Google Scholar 

  59. • Grabitz SD, Rajaratnam N, Chhagani K, Thevathasan T, Teja BJ, Deng H, et al. The effects of postoperative residual neuromuscular blockade on hospital costs and intensive care unit admission: a population-based cohort study. Anesth Analg. 2019;128:1129–36. https://doi.org/10.1213/ANE.0000000000004028. Cohort study on the effects of residual neuromuscular blockade on intensive care unit admission and costs.

    Article  PubMed  Google Scholar 

  60. Murphy GS, Szokol JW, Avram MJ, Greenberg SB, Shear TD, Vender JS, et al. Residual neuromuscular block in the elderly: incidence and clinical implications. Anesthesiology. 2015;123:1322–36. https://doi.org/10.1097/ALN.0000000000000865.

    Article  PubMed  Google Scholar 

  61. Thevathasan T, Shih SL, Safavi KC, Berger DL, Burns SM, Grabitz SD, et al. Association between intraoperative non-depolarising neuromuscular blocking agent dose and 30-day readmission after abdominal surgery. Br J Anaesth. 2017;119:595–605. https://doi.org/10.1093/bja/aex240.

    Article  CAS  PubMed  Google Scholar 

  62. Harman A, Tung A, Fox C, Lien CA. Heuristics, overconfidence, and experience: impact on monitoring depth of neuromuscular blockade. Anesth Analg. 2019;128:1057–9. https://doi.org/10.1213/ANE.0000000000003965.

    Article  PubMed  Google Scholar 

  63. Blum LV, Steeger E, Iken S, Lotz G, Zinn S, Piekarski F, et al. Effect of quantitative versus qualitative neuromuscular blockade monitoring on rocuronium consumption in patients undergoing abdominal and gynecological surgery: a retrospective cohort study. J Clin Monit Comput. 2023;37:509–16. https://doi.org/10.1007/s10877-022-00909-y.

    Article  PubMed  Google Scholar 

  64. Takahoko K, Iwasaki H, Inaba Y, Matsuno T, Matsuno R, Luthe SK, et al. The association between intraoperative objective neuromuscular monitoring and rocuronium consumption during laparoscopic abdominal surgery: a single-center retrospective analysis. Cureus. 2021;13:e19245. https://doi.org/10.7759/cureus.19245.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zheng J, Du L, Deng X, Zhang L, Wang J, Chen G. Deep neuromuscular block for minimally invasive lung surgery: a protocol for a systematic review with meta-analysis and trial sequential analysis. BMJ Open. 2022;12:e056816. https://doi.org/10.1136/bmjopen-2021-056816.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Naguib M, Brull SJ, Johnson KB. Conceptual and technical insights into the basis of neuromuscular monitoring. Anaesthesia. 2017;72(Suppl 1):16–37. https://doi.org/10.1111/anae.13738.

    Article  PubMed  Google Scholar 

  67. Biro P, Paul G, Dahan A, Brull SJ. Proposal for a revised classification of the depth of neuromuscular block and suggestions for further development in neuromuscular monitoring. Anesth Analg. 2019;128:1361–3. https://doi.org/10.1213/ANE.0000000000004065.

    Article  PubMed  Google Scholar 

  68. Brull SJ, Murphy GS. Residual neuromuscular block: lessons unlearned. Part II: methods to reduce the risk of residual weakness. Anesth Analg. 2010;111:129–40. https://doi.org/10.1213/ANE.0b013e3181da8312.

    Article  PubMed  Google Scholar 

  69. Santer P, Wachtendorf LJ, Suleiman A, Houle TT, Fassbender P, Costa EL, et al. Mechanical power during general anesthesia and postoperative respiratory failure: a multicenter retrospective cohort study. Anesthesiology. 2022;137:41–54. https://doi.org/10.1097/ALN.0000000000004256.

    Article  CAS  PubMed  Google Scholar 

  70. Tartler TM, Wachtendorf LJ, Suleiman A, Blank M, Ahrens E, Linhardt FC, et al. The association of intraoperative low driving pressure ventilation and nonhome discharge: a historical cohort study. Can J Anaesth. 2023;70:359–73. https://doi.org/10.1007/s12630-022-02378-y.

    Article  PubMed  Google Scholar 

  71. Suleiman A, Costa E, Santer P, Tartler TM, Wachtendorf LJ, Teja B, et al. Association between intraoperative tidal volume and postoperative respiratory complications is dependent on respiratory elastance: a retrospective, multicentre cohort study. Br J Anaesth. 2022;129:263–72. https://doi.org/10.1016/j.bja.2022.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Griffith HR, Johnson GE. The use of curare in general anesthesia. Anesthesiology. 1942;3:418–20. https://doi.org/10.1097/00000542-194207000-00006.

    Article  CAS  Google Scholar 

  73. • Mulier JP, Hunter JM, de Boer HD. Seventy-five years since the birth of the Liverpool anaesthetic technique. Br J Anaesth. 2021;126:343–7. https://doi.org/10.1016/j.bja.2020.10.020. Comprehensive editorial on the evolution of modern general anesthesia utilizing neuromuscular blocking agents.

    Article  PubMed  Google Scholar 

  74. Arbous MS, Meursing AEE, van Kleef JW, de Lange JJ, Spoormans HHAJM, Touw P, et al. Impact of anesthesia management characteristics on severe morbidity and mortality. Anesthesiology. 2005;102:257–68. https://doi.org/10.1097/00000542-200502000-00005.

    Article  PubMed  Google Scholar 

  75. Bulka CM, Terekhov MA, Martin BJ, Dmochowski RR, Hayes RM, Ehrenfeld JM. Nondepolarizing neuromuscular blocking agents, reversal, and risk of postoperative pneumonia. Anesthesiology. 2016;125:647–55. https://doi.org/10.1097/ALN.0000000000001279.

    Article  CAS  PubMed  Google Scholar 

  76. Herbstreit F, Zigrahn D, Ochterbeck C, Peters J, Eikermann M. Neostigmine/glycopyrrolate administered after recovery from neuromuscular block increases upper airway collapsibility by decreasing genioglossus muscle activity in response to negative pharyngeal pressure. Anesthesiology. 2010;113:1280–8. https://doi.org/10.1097/ALN.0b013e3181f70f3d.

    Article  CAS  PubMed  Google Scholar 

  77. Eikermann M, Zaremba S, Malhotra A, Jordan AS, Rosow C, Chamberlin NL. Neostigmine but not sugammadex impairs upper airway dilator muscle activity and breathing. Br J Anaesth. 2008;101:344–9. https://doi.org/10.1093/bja/aen176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. •• Shaydenfish D, Scheffenbichler FT, Kelly BJ, Lihn A-L, Deng H, Nourmahnad A, et al. Effects of anticholinesterase reversal under general anesthesia on postoperative cardiovascular complications: a retrospective cohort study. Anesth Analg. 2020;130:685–95. https://doi.org/10.1213/ANE.0000000000004099. Retrospective cohort study showing higher risks of cardiovascular complications after surgery in patients who received neostigmine.

    Article  CAS  PubMed  Google Scholar 

  79. Schaller SJ, Fink H, Ulm K, Blobner M. Sugammadex and neostigmine dose-finding study for reversal of shallow residual neuromuscular block. Anesthesiology. 2010;113:1054–60. https://doi.org/10.1097/ALN.0b013e3181f4182a.

    Article  PubMed  Google Scholar 

  80. Fuchs-Buder T, Meistelman C, Alla F, Grandjean A, Wuthrich Y, Donati F. Antagonism of low degrees of atracurium-induced neuromuscular blockade: dose-effect relationship for neostigmine. Anesthesiology. 2010;112:34–40. https://doi.org/10.1097/ALN.0b013e3181c53863.

    Article  PubMed  Google Scholar 

  81. Rudolph MI, Chitilian HV, Ng PY, Timm FP, Agarwala AV, Doney AB, et al. Implementation of a new strategy to improve the peri-operative management of neuromuscular blockade and its effects on postoperative pulmonary complications. Anaesthesia. 2018;73:1067–78. https://doi.org/10.1111/anae.14326.

    Article  CAS  PubMed  Google Scholar 

  82. Kirkegaard H, Heier T, Caldwell JE. Efficacy of tactile-guided reversal from cisatracurium-induced neuromuscular block. Anesthesiology. 2002;96:45–50. https://doi.org/10.1097/00000542-200201000-00013.

    Article  PubMed  Google Scholar 

  83. Kopman AF, Eikermann M. Antagonism of non-depolarising neuromuscular block: current practice. Anaesthesia. 2009;64(Suppl 1):22–30. https://doi.org/10.1111/j.1365-2044.2008.05867.x.

    Article  CAS  PubMed  Google Scholar 

  84. Brull SJ, Kopman AF. Current status of neuromuscular reversal and monitoring: challenges and opportunities. Anesthesiology. 2017;126:173–90. https://doi.org/10.1097/ALN.0000000000001409.

    Article  PubMed  Google Scholar 

  85. Sparr HJ, Vermeyen KM, Beaufort AM, Rietbergen H, Proost JH, Saldien V, et al. Early reversal of profound rocuronium-induced neuromuscular blockade by sugammadex in a randomized multicenter study: efficacy, safety, and pharmacokinetics. Anesthesiology. 2007;106:935–43. https://doi.org/10.1097/01.anes.0000265152.78943.74.

    Article  CAS  PubMed  Google Scholar 

  86. Hristovska A-M, Duch P, Allingstrup M, Afshari A. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults. Cochrane Database Syst Rev. 2017;8:CD012763. https://doi.org/10.1002/14651858.CD012763.

    Article  PubMed  Google Scholar 

  87. Adams DR, Tollinche LE, Yeoh CB, Artman J, Mehta M, Phillips D, et al. Short-term safety and effectiveness of sugammadex for surgical patients with end-stage renal disease: a two-centre retrospective study. Anaesthesia. 2020;75:348–52. https://doi.org/10.1111/anae.14914.

    Article  CAS  PubMed  Google Scholar 

  88. Brueckmann B, Sasaki N, Grobara P, Li MK, Woo T, de Bie J, et al. Effects of sugammadex on incidence of postoperative residual neuromuscular blockade: a randomized, controlled study. Br J Anaesth. 2015;115:743–51. https://doi.org/10.1093/bja/aev104.

    Article  CAS  PubMed  Google Scholar 

  89. •• Kheterpal S, Vaughn MT, Dubovoy TZ, Shah NJ, Bash LD, Colquhoun DA, et al. Sugammadex versus neostigmine for reversal of neuromuscular blockade and postoperative pulmonary complications (STRONGER): a multicenter matched cohort analysis. Anesthesiology. 2020;132:1371–81. https://doi.org/10.1097/ALN.0000000000003256. Multicenter retrospective cohort study with a matched analysis showing lower risks of postoperative pulmonary complications in patients receiving sugammadex versus neostigmine.

    Article  PubMed  Google Scholar 

  90. •• Blobner M, Hollmann MW, Luedi MM, Johnson KB. Pro-Con debate: do we need quantitative neuromuscular monitoring in the era of sugammadex? Anesth Analg. 2022;135:39–48. https://doi.org/10.1213/ANE.0000000000005925. Pro-contra article discussing the use of neuromuscular monitoring.

    Article  PubMed  Google Scholar 

  91. Rosenberg J, Herring WJ, Blobner M, Mulier JP, Rahe-Meyer N, Woo T, et al. Deep neuromuscular blockade improves laparoscopic surgical conditions: a randomized, controlled study. Adv Ther. 2017;34:925–36. https://doi.org/10.1007/s12325-017-0495-x.

    Article  PubMed  Google Scholar 

  92. Unterbuchner C, Blobner M. Deep neuromuscular blockade : benefits and risks. Anaesthesist. 2018;67:165–76. https://doi.org/10.1007/s00101-018-0425-6.

    Article  CAS  PubMed  Google Scholar 

  93. • Li G, Freundlich RE, Gupta RK, Hayhurst CJ, Le CH, Martin BJ, et al. Postoperative pulmonary complications’ association with sugammadex versus neostigmine: a retrospective registry analysis. Anesthesiology. 2021;134:862–73. https://doi.org/10.1097/ALN.0000000000003735. Recent retrospective study that found no difference in the risk of postoperative pulmonary complications compared between sugammadex and neostigmine.

    Article  CAS  PubMed  Google Scholar 

  94. •• Ruetzler K, Li K, Chhabada S, Maheshwari K, Chahar P, Khanna S, et al. Sugammadex versus neostigmine for reversal of residual neuromuscular blocks after surgery: a retrospective cohort analysis of postoperative side effects. Anesth Analg. 2022;134:1043–53. https://doi.org/10.1213/ANE.0000000000005842. Retrospective study suggesting a comparable safety profile of sugammadex and neostigmine for minor complications.

    Article  PubMed  Google Scholar 

  95. •• Suleiman A, Munoz-Acuna R, Azimaraghi O, Houle TT, Chen G, Rupp S, et al. The effects of sugammadex vs. neostigmine on postoperative respiratory complications and advanced healthcare utilisation: a multicentre retrospective cohort study. Anaesthesia. 2023;78:294–302. https://doi.org/10.1111/anae.15940.Multicentric retrospective study suggesting a lower risk of advanced healthcare utilization with sugammadex use in high-risk patients while no difference was found in a general surgical patient population.

    Article  CAS  PubMed  Google Scholar 

  96. •• Ledowski T, Szabó-Maák Z, Loh PS, Turlach BA, Yang HS, de Boer HD, et al. Reversal of residual neuromuscular block with neostigmine or sugammadex and postoperative pulmonary complications: a prospective, randomised, double-blind trial in high-risk older patients. Br J Anaesth. 2021;127:316–23. https://doi.org/10.1016/j.bja.2021.04.026. Prospective randomized trial that observed a possible improvement in pulmonary outcomes in patients receiving sugammadex.

    Article  CAS  PubMed  Google Scholar 

  97. •• Azimaraghi O, Ahrens E, Wongtangman K, Witt AS, Rupp S, Suleiman A, et al. Association of sugammadex reversal of neuromuscular block and postoperative length of stay in the ambulatory care facility: a multicentre hospital registry study. Br J Anaesth. 2023;130:296–304. https://doi.org/10.1016/j.bja.2022.10.044. Multicentric retrospective study suggesting a shorter length of stay in the post-anesthesia care unit and lower hospital costs in patients receiving sugammadex; these effects were magnified in high-risk patients.

    Article  PubMed  Google Scholar 

  98. Giuffrida M, Ledingham NS, Machi P, Czarnetzki CA. Rapid arousal from anaesthesia after reversal of deep rocuronium-induced neuromuscular block with sugammadex in a neuroradiological procedure. BMJ Case Rep. 2021;14:e242820. https://doi.org/10.1136/bcr-2021-242820.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Chazot T, Dumont G, Le Guen M, Hausser-Hauw C, Liu N, Fischler M. Sugammadex administration results in arousal from intravenous anaesthesia: a clinical and electroencephalographic observation. Br J Anaesth. 2011;106:914–6. https://doi.org/10.1093/bja/aer142.

    Article  CAS  PubMed  Google Scholar 

  100. Komasawa N, Nishihara I, Minami T. Relationship between timing of sugammadex administration and development of laryngospasm during recovery from anaesthesia when using supraglottic devices: a randomised clinical study. Eur J Anaesthesiol. 2016;33:691–2. https://doi.org/10.1097/EJA.0000000000000454.

    Article  PubMed  Google Scholar 

  101. •• Fuchs-Buder T, Romero CS, Lewald H, Lamperti M, Afshari A, Hristovska A-M, et al. Peri-operative management of neuromuscular blockade: a guideline from the European Society of Anaesthesiology and Intensive Care. Eur J Anaesthesiol. 2023;40:82–94. https://doi.org/10.1097/EJA.0000000000001769. European consensus guidelines on the management of neuromuscular blockade in surgical patients.

    Article  PubMed  Google Scholar 

  102. •• Thilen SR, Weigel WA, Todd MM, Dutton RP, Lien CA, Grant SA, et al. 2023 American Society of Anesthesiologists practice guidelines for monitoring and antagonism of neuromuscular blockade: a report by the American Society of Anesthesiologists task force on neuromuscular blockade. Anesthesiology. 2023;138:13–41. https://doi.org/10.1097/ALN.0000000000004379. American practice guidelines on the management of neuromuscular blockade in surgical patients.

    Article  PubMed  Google Scholar 

  103. Lemmens HJ, El-Orbany MI, Berry J, Morte JB, Martin G. Reversal of profound vecuronium-induced neuromuscular block under sevoflurane anesthesia: sugammadex versus neostigmine. BMC Anesthesiol. 2010;10:15. https://doi.org/10.1186/1471-2253-10-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pühringer FK, Rex C, Sielenkämper AW, Claudius C, Larsen PB, Prins ME, et al. Reversal of profound, high-dose rocuronium-induced neuromuscular blockade by sugammadex at two different time points: an international, multicenter, randomized, dose-finding, safety assessor-blinded, phase II trial. Anesthesiology. 2008;109:188–97. https://doi.org/10.1097/ALN.0b013e31817f5bc7.

    Article  CAS  PubMed  Google Scholar 

  105. White PF, Tufanogullari B, Sacan O, Pavlin EG, Viegas OJ, Minkowitz HS, et al. The effect of residual neuromuscular blockade on the speed of reversal with sugammadex. Anesth Analg. 2009;108:846–51. https://doi.org/10.1213/ane.0b013e31818a9932.

    Article  CAS  PubMed  Google Scholar 

  106. Jones RK, Caldwell JE, Brull SJ, Soto RG. Reversal of profound rocuronium-induced blockade with sugammadex: a randomized comparison with neostigmine. Anesthesiology. 2008;109:816–24. https://doi.org/10.1097/ALN.0b013e31818a3fee.

    Article  CAS  PubMed  Google Scholar 

  107. Della Rocca G, Pompei L, Pagan DE, Paganis C, Tesoro S, Mendola C, Boninsegni P, et al. Reversal of rocuronium induced neuromuscular block with sugammadex or neostigmine: a large observational study. Acta Anaesthesiol Scand. 2013;57:1138–45. https://doi.org/10.1111/aas.12155.

    Article  CAS  PubMed  Google Scholar 

  108. He J, He H, Li X, Sun M, Lai Z, Xu B. Required dose of sugammadex or neostigmine for reversal of vecuronium-induced shallow residual neuromuscular block at a train-of-four ratio of 0.3. Clin Transl Sci. 2022;15:234–43. https://doi.org/10.1111/cts.13143.

    Article  CAS  PubMed  Google Scholar 

  109. Pongrácz A, Szatmári S, Nemes R, Fülesdi B, Tassonyi E. Reversal of neuromuscular blockade with sugammadex at the reappearance of four twitches to train-of-four stimulation. Anesthesiology. 2013;119:36–42. https://doi.org/10.1097/ALN.0b013e318297ce95.

    Article  CAS  PubMed  Google Scholar 

  110. Saager L, Maiese EM, Bash LD, Meyer TA, Minkowitz H, Groudine S, et al. Incidence, risk factors, and consequences of residual neuromuscular block in the United States: the prospective, observational, multicenter RECITE-US study. J Clin Anesth. 2019;55:33–41. https://doi.org/10.1016/j.jclinane.2018.12.042.

    Article  PubMed  Google Scholar 

  111. Suzuki T, Fukano N, Kitajima O, Saeki S, Ogawa S. Normalization of acceleromyographic train-of-four ratio by baseline value for detecting residual neuromuscular block. Br J Anaesth. 2006;96:44–7. https://doi.org/10.1093/bja/aei273.

    Article  CAS  PubMed  Google Scholar 

  112. Liang SS, Stewart PA, Phillips S. An ipsilateral comparison of acceleromyography and electromyography during recovery from nondepolarizing neuromuscular block under general anesthesia in humans. Anesth Analg. 2013;117:373–9. https://doi.org/10.1213/ANE.0b013e3182937fc4.

    Article  PubMed  Google Scholar 

  113. Rudolph MI, Azimaraghi O, Salloum E, Wachtendorf LJ, Suleiman A, Kammerer T, Schaefer MS, Eikermann M, Kiyatkin ME. Association of reintubation and hospital costs and its modification by postoperative surveillance: A multicenter retrospective cohort study. J Clin Anesth. 2023;91:111264. https://doi.org/10.1016/j.jclinane.2023.111264.

  114. • Ludbrook GL. The hidden pandemic: the cost of postoperative complications. Curr Anesthesiol Rep. 2022;12:1–9. https://doi.org/10.1007/s40140-021-00493-y. Comprehensive review discussing the magnitude and economic consequences of postoperative complications.

    Article  PubMed  Google Scholar 

  115. Merkow RP, Shan Y, Gupta AR, Yang AD, Sama P, Schumacher M, et al. A comprehensive estimation of the costs of 30-day postoperative complications using actual costs from multiple, diverse hospitals. Jt Comm J Qual Patient Saf. 2020;46:558–64. https://doi.org/10.1016/j.jcjq.2020.06.011.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Butterly A, Bittner EA, George E, Sandberg WS, Eikermann M, Schmidt U. Postoperative residual curarization from intermediate-acting neuromuscular blocking agents delays recovery room discharge. Br J Anaesth. 2010;105:304–9. https://doi.org/10.1093/bja/aeq157.

    Article  CAS  PubMed  Google Scholar 

  117. Thevathasan T, Copeland CC, Long DR, Patrocínio MD, Friedrich S, Grabitz SD, et al. The impact of postoperative intensive care unit admission on postoperative hospital length of stay and costs: a prespecified propensity-matched cohort study. Anesth Analg. 2019;129:753–61. https://doi.org/10.1213/ANE.0000000000003946.

    Article  PubMed  Google Scholar 

  118. •• Wachtendorf LJ, Tartler TM, Ahrens E, Witt AS, Azimaraghi O, Fassbender P, et al. Comparison of the effects of sugammadex versus neostigmine for reversal of neuromuscular block on hospital costs of care. Br J Anaesth. 2023;130:133–41. https://doi.org/10.1016/j.bja.2022.10.015. Multicentric retrospective study suggesting lower hospital costs in low-risk patients receiving sugammadex.

    Article  CAS  PubMed  Google Scholar 

  119. •• Colquhoun DA, Vaughn MT, Bash LD, Janda A, Shah N, Ghaferi A, et al. Association between choice of reversal agent for neuromuscular block and postoperative pulmonary complications in patients at increased risk undergoing non-emergency surgery: STIL-STRONGER, a multicentre matched cohort study. Br J Anaesth. 2023;130:e148–59. https://doi.org/10.1016/j.bja.2022.04.023. Recent multicentric retrospective study showing that the use of sugammadex versus neostigmine is independently associated with reduced risk of pneumonia or respiratory failure in high-risk patients.

    Article  CAS  PubMed  Google Scholar 

  120. Paton F, Paulden M, Chambers D, Heirs M, Duffy S, Hunter JM, et al. Sugammadex compared with neostigmine/glycopyrrolate for routine reversal of neuromuscular block: a systematic review and economic evaluation. Br J Anaesth. 2010;105:558–67. https://doi.org/10.1093/bja/aeq269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. •• Bartels K, Fernandez-Bustamante A, Vidal Melo MF. Reversal of neuromuscular block: what are the costs? Br J Anaesth. 2023; https://doi.org/10.1016/j.bja.2023.04.037. Comprehensive editorial which explains the cost-saving effects of sugammadex in specific scenarios.

  122. Carron M, Zarantonello F, Lazzarotto N, Tellaroli P, Ori C. Role of sugammadex in accelerating postoperative discharge: a meta-analysis. J Clin Anesth. 2017;39:38–44. https://doi.org/10.1016/j.jclinane.2017.03.004.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding for this work was provided solely from institutional and departmental sources.

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: all authors. Drafting of the manuscript: all authors. Critical revision of the manuscript: all authors. Obtained funding: Schaefer. Supervision: Schaefer.

Corresponding author

Correspondence to Maximilian S. Schaefer.

Ethics declarations

Conflict of Interest

Maximilian S. Schaefer received funding for investigator-initiated studies from Merck & Co. He is an associate editor for BMC Anesthesiology. He received honoraria for lectures from Mindray Medical International Limited. He also received an unrestricted philanthropic grant from Jeffrey and Judith Buzen. All other authors declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wachtendorf, L.J., Ahrens, E., Suleiman, A. et al. Monitoring Depth of Neuromuscular Blockade and Adequacy of Reversal: Clinical and Pharmacoeconomic Implications. Curr Anesthesiol Rep 13, 239–256 (2023). https://doi.org/10.1007/s40140-023-00581-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-023-00581-1

Keywords

Navigation