Skip to main content

Advertisement

Log in

Blood Conservation for Complex Spine and Intracranial Procedures

  • Blood Management (KA Tanaka, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Neurological surgery, which includes intracranial and spine surgery, is associated with a significant risk of major perioperative bleeding. This review highlights the various blood conservation techniques currently in practice for major, complex spine and intracranial surgery.

Recent Findings

Several techniques have been described to reduce blood loss and transfusion requirements perioperatively. These include preoperative risk identification and stratification and use of different blood conservation strategies perioperatively. The efficacy and safety of tranexamic acid has been demonstrated in major spine surgery, and its role has expanded in traumatic brain injury based on the CRASH-3 study. Permissive hypotension should be avoided based on recent high-quality observational data on the negative effects of cumulative hypotension on end-organ injury. The use of viscoelastic blood coagulation management is increasingly used as a theragnostic approach to blood conservation strategies.

Summary

The ability to minimize blood loss and reduce exposure to allogeneic blood transfusions, which can greatly increase perioperative morbidity and mortality, is paramount. Our review provides a framework for evidence-based blood conservation strategies for neurological surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Basques BA, Anandasivam NS, Webb ML, Samuel AM, Lukasiewicz AM, Bohl DD, et al. Risk factors for blood transfusion with primary posterior lumbar fusion. Spine. 2015;40:1792–7.

    Article  PubMed  Google Scholar 

  2. Hu SS. Blood loss in adult spinal surgery. Eur Spine J. 2004;13(Suppl 1):S3–5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pauyo T, Verma N, Marwan Y, Aoude A, Khashan M, Weber MH. Canadian consensus for the prevention of blood loss in spine surgery. Spine. 2017;42:E50–E5.

    Article  PubMed  Google Scholar 

  4. Raad M, Amin R, Jain A, Frank SM, Kebaish KM. Multilevel arthrodesis for adult spinal deformity: when should we anticipate major blood loss? Spine Deform. 2019;7:141–5.

    Article  PubMed  Google Scholar 

  5. Zheng F, Cammisa FP Jr, Sandhu HS, Girardi FP, Khan SN. Factors predicting hospital stay, operative time, blood loss, and transfusion in patients undergoing revision posterior lumbar spine decompression, fusion, and segmental instrumentation. Spine. 2002;27:818–24.

    Article  PubMed  Google Scholar 

  6. Park CK. The effect of patient positioning on intraabdominal pressure and blood loss in spinal surgery. Anesth Analg. 2000;91:552–7.

    Article  CAS  PubMed  Google Scholar 

  7. Malhotra A, Gupta V, Abraham M, Punetha P, Bundela Y. Quantifying the amount of bleeding and associated changes in intra-abdominal pressure and mean airway pressure in patients undergoing lumbar fixation surgeries: a comparison of three positioning systems. Asian Spine J. 2016;10:199–204.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rajagopalan S, Mascha E, Na J, Sessler DI. The effects of mild perioperative hypothermia on blood loss and transfusion requirement. Anesthesiology. 2008;108:71–7.

    Article  PubMed  Google Scholar 

  9. Dirkmann D, Hanke AA, Gorlinger K, Peters J. Hypothermia and acidosis synergistically impair coagulation in human whole blood. Anesth Analg. 2008;106:1627–32.

    Article  PubMed  Google Scholar 

  10. Murray DJ, Pennell BJ, Weinstein SL, Olson JD. Packed red cells in acute blood loss: dilutional coagulopathy as a cause of surgical bleeding. Anesth Analg. 1995;80:336–42.

    CAS  PubMed  Google Scholar 

  11. Cap A, Hunt BJ. The pathogenesis of traumatic coagulopathy. Anaesthesia. 2015;70(Suppl 1):96–101 e32–4.

    Article  PubMed  Google Scholar 

  12. Mittermayr M, Streif W, Haas T, Fries D, Velik-Salchner C, Klingler A, et al. Hemostatic changes after crystalloid or colloid fluid administration during major orthopedic surgery: the role of fibrinogen administration. Anesth Analg. 2007;105:905–17.

    Article  CAS  PubMed  Google Scholar 

  13. Naik BI, Pajewski TN, Bogdonoff DI, Zuo Z, Clark P, Terkawi AS, et al. Rotational thromboelastometry-guided blood product management in major spine surgery. J Neurosurg Spine. 2015;23:239–49.

    Article  PubMed  Google Scholar 

  14. Colomina MJ, Bago J, Pellise F, Godet C, Villanueva C. Preoperative erythropoietin in spine surgery. Eur Spine J. 2004;13(Suppl 1):S40–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Monk TG. Preoperative recombinant human erythropoietin in anemic surgical patients. Crit Care. 2004;8(Suppl 2):S45–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Goldberg MA, McCutchen JW, Jove M, Di Cesare P, Friedman RJ, Poss R, et al. A safety and efficacy comparison study of two dosing regimens of epoetin alfa in patients undergoing major orthopedic surgery. Am J Orthop (Belle Mead NJ). 1996;25:544–52.

    CAS  Google Scholar 

  17. Brookfield KF, Brown MD, Henriques SM, Buttacavoli FA, Seitz AP. Allogeneic transfusion after predonation of blood for elective spine surgery. Clin Orthop Relat Res. 2008;466:1949–53.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shapiro GS, Boachie-Adjei O, Dhawlikar SH, Maier LS. The use of Epoetin alfa in complex spine deformity surgery. Spine. 2002;27:2067–71.

    Article  PubMed  Google Scholar 

  19. Park JH, Ahn Y, Choi BS, Choi KT, Lee K, Kim SH, et al. Antithrombotic effects of aspirin on 1- or 2-level lumbar spinal fusion surgery: a comparison between 2 groups discontinuing aspirin use before and after 7 days prior to surgery. Spine. 2013;38:1561–5.

    Article  CAS  PubMed  Google Scholar 

  20. Narouze S, Benzon HT, Provenzano D, Buvanendran A, De Andres J, Deer T, et al. Interventional spine and pain procedures in patients on antiplatelet and anticoagulant medications (second edition): guidelines from the American Society of Regional Anesthesia and Pain Medicine, the European Society of Regional Anaesthesia and Pain Therapy, the American Academy of Pain Medicine, the International Neuromodulation Society, the North American Neuromodulation Society, and the World Institute of Pain. Reg Anesth Pain Med. 2018;43:225–62.

    Article  PubMed  Google Scholar 

  21. Kang SB, Cho KJ, Moon KH, Jung JH, Jung SJ. Does low-dose aspirin increase blood loss after spinal fusion surgery? Spine J. 2011;11:303–7.

    Article  PubMed  Google Scholar 

  22. Carson JL, Stanworth SJ, Roubinian N, Fergusson DA, Triulzi D, Doree C, et al. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst Rev. 2016;10:CD002042.

    PubMed  Google Scholar 

  23. Alfonso AR, Hutzler L, Lajam C, Bosco J, Goldstein J. Institution-wide blood management protocol reduces transfusion rates following spine surgery. Int J Spine Surg. 2019;13:270–4.

    Article  PubMed  PubMed Central  Google Scholar 

  24. collaborators C-t, Shakur H, Roberts I, Bautista R, Caballero J, Coats T, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376:23–32.

    Article  CAS  Google Scholar 

  25. Collaborators WT. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet. 2017;389:2105–16.

    Article  Google Scholar 

  26. Ker K, Roberts I. Tranexamic acid for surgical bleeding. BMJ. 2014;349:g4934.

    Article  PubMed  CAS  Google Scholar 

  27. Gill JB, Chin Y, Levin A, Feng D. The use of antifibrinolytic agents in spine surgery. A meta-analysis. J Bone Joint Surg Am. 2008;90:2399–407.

    Article  PubMed  Google Scholar 

  28. Colomina MJ, Koo M, Basora M, Pizones J, Mora L, Bago J. Intraoperative tranexamic acid use in major spine surgery in adults: a multicentre, randomized, placebo-controlled trial. Br J Anaesth. 2017;118:380–90.

    Article  CAS  PubMed  Google Scholar 

  29. Kalavrouziotis D, Voisine P, Mohammadi S, Dionne S, Dagenais F. High-dose tranexamic acid is an independent predictor of early seizure after cardiopulmonary bypass. Ann Thorac Surg. 2012;93:148–54.

    Article  PubMed  Google Scholar 

  30. Shapiro F, Zurakowski D, Sethna NF. Tranexamic acid diminishes intraoperative blood loss and transfusion in spinal fusions for duchenne muscular dystrophy scoliosis. Spine. 2007;32:2278–83.

    Article  PubMed  Google Scholar 

  31. Sethna NF, Zurakowski D, Brustowicz RM, Bacsik J, Sullivan LJ, Shapiro F. Tranexamic acid reduces intraoperative blood loss in pediatric patients undergoing scoliosis surgery. Anesthesiology. 2005;102:727–32.

    Article  CAS  PubMed  Google Scholar 

  32. • Lin JD, Lenke LG, Shillingford JN, Laratta JL, Tan LA, Fischer CR, et al. Safety of a High-Dose Tranexamic Acid Protocol in Complex Adult Spinal Deformity: Analysis of 100 Consecutive Cases. Spine Deform. 2018;6:189–94 An important article to note the safety and efficacy of higher doses of tranexamic acid used in major adult spinal deformity surgery. With infusions of 5 mL/kg/h and bolus of 50 mL/kg, this paper reconsiders higher dosing with better benefits in adult patients.

    Article  PubMed  Google Scholar 

  33. • Hui S, Xu D, Ren Z, Chen X, Sheng L, Zhuang Q, et al. Can tranexamic acid conserve blood and save operative time in spinal surgeries? A meta-analysis. Spine J. 2018;18:1325–37 An article of great importance utilizing a meta-analysis technique applied to various tranexamic acid dosing studies, analyzing their overall effects.

    Article  PubMed  Google Scholar 

  34. Fuah KW, Lim CTS, Pang DCL, Wong JS. Seizure induced by tranexamic acid in a patient with chronic kidney disease on maintenance dialysis. Saudi J Kidney Dis Transpl. 2018;29:207–9.

    Article  PubMed  Google Scholar 

  35. Li ZJ, Fu X, Xing D, Zhang HF, Zang JC, Ma XL. Is tranexamic acid effective and safe in spinal surgery? A meta-analysis of randomized controlled trials. Eur Spine J. 2013;22:1950–7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Georgiev GP, Tanchev PP, Zheleva Z, Kinov P. Comparison of topical and intravenous administration of tranexamic acid for blood loss control during total joint replacement: review of literature. J Orthop Translat. 2018;13:7–12.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ren Z, Li S, Sheng L, Zhuang Q, Li Z, Xu D, et al. Topical use of tranexamic acid can effectively decrease hidden blood loss during posterior lumbar spinal fusion surgery: a retrospective study. Medicine (Baltimore). 2017;96:e8233.

    Article  CAS  Google Scholar 

  38. Desai BD, Taylor DG, Chen CJ, Buell TJ, Mullin JP, Naik BI, et al. Utility of topical tranexamic acid for adult patients with spinal deformity and contraindications to systemic tranexamic acid: initial experience and report of 2 cases. J Neurosurg Spine. 2019:1–6.

  39. Ker K, Beecher D, Roberts I. Topical application of tranexamic acid for the reduction of bleeding. Cochrane Database Syst Rev. 2013:CD010562.

  40. Yu CC, Kadri O, Kadado A, Buraimoh M, Pawloski J, Bartol S, et al. Intravenous and oral tranexamic acid are equivalent at reducing blood loss in thoracolumbar spinal fusion: a prospective randomized trial. Spine. 2019;44:755–61.

    Article  PubMed  Google Scholar 

  41. Keene DD, Nordmann GR, Woolley T. Rotational thromboelastometry-guided trauma resuscitation. Curr Opin Crit Care. 2013;19:605–12.

    PubMed  Google Scholar 

  42. Naik BI, Durieux ME, Knisely A, Sharma J, Bui-Huynh VC, Yalamuru B, et al. SEER sonorheometry versus rotational thromboelastometry in large volume blood loss spine surgery. Anesth Analg. 2016;123:1380–9.

    Article  PubMed  Google Scholar 

  43. Guan J, Cole CD, Schmidt MH, Dailey AT. Utility of intraoperative rotational thromboelastometry in thoracolumbar deformity surgery. J Neurosurg Spine. 2017;27:528–33.

    Article  PubMed  Google Scholar 

  44. Buell TJ, Taylor DG, Chen CJ, Dunn LK, Mullin JP, Mazur MD, et al. Rotational thromboelastometry-guided transfusion during lumbar pedicle subtraction osteotomy for adult spinal deformity: preliminary findings from a matched cohort study. Neurosurg Focus. 2019;46:E17.

    Article  PubMed  Google Scholar 

  45. Paul JE, Ling E, Lalonde C, Thabane L. Deliberate hypotension in orthopedic surgery reduces blood loss and transfusion requirements: a meta-analysis of randomized controlled trials. Can J Anaesth. 2007;54:799–810.

    Article  PubMed  Google Scholar 

  46. Practice advisory for perioperative visual loss associated with spine surgery 2019: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Visual Loss, the North American Neuro-Ophthalmology Society, and the Society for Neuroscience in Anesthesiology and Critical Care. Anesthesiology 2019;130:12–30.

  47. Jiang J, Zhou R, Li B, Xue F. Is deliberate hypotension a safe technique for orthopedic surgery?: a systematic review and meta-analysis of parallel randomized controlled trials. J Orthop Surg Res. 2019;14:409.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kakiuchi M. Intraoperative blood loss during cervical laminoplasty correlates with the vertebral intraosseous pressure. J Bone Joint Surg Br. 2002;84:518–20.

    Article  CAS  PubMed  Google Scholar 

  49. Myers MA, Hamilton SR, Bogosian AJ, Smith CH, Wagner TA. Visual loss as a complication of spine surgery. A review of 37 cases. Spine. 1997;22:1325–9.

    Article  CAS  PubMed  Google Scholar 

  50. Nandyala SV, Marquez-Lara A, Fineberg SJ, Singh R, Singh K. Incidence and risk factors for perioperative visual loss after spinal fusion. Spine J. 2014;14:1866–72.

    Article  PubMed  Google Scholar 

  51. Goyal A, Elminawy M, Alvi MA, Long TR, Chen JJ, Bradley E, et al. Ischemic optic neuropathy following spine surgery: case control analysis and systematic review of the literature. Spine. 2019;44:1087–96.

    Article  PubMed  Google Scholar 

  52. Patil CG, Lad EM, Lad SP, Ho C, Boakye M. Visual loss after spine surgery: a population-based study. Spine. 2008;33:1491–6.

    Article  PubMed  Google Scholar 

  53. Li A, Swinney C, Veeravagu A, Bhatti I, Ratliff J. Postoperative visual loss following lumbar spine surgery: a review of risk factors by diagnosis. World Neurosurg. 2015;84:2010–21.

    Article  PubMed  Google Scholar 

  54. Walsh M, Devereaux PJ, Garg AX, Kurz A, Turan A, Rodseth RN, et al. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology. 2013;119:507–15.

    Article  PubMed  Google Scholar 

  55. Biteker M, Dayan A, Tekkesin AI, Can MM, Tayci I, Ilhan E, et al. Incidence, risk factors, and outcomes of perioperative acute kidney injury in noncardiac and nonvascular surgery. Am J Surg. 2014;207:53–9.

    Article  PubMed  Google Scholar 

  56. •• Mathis MR, Naik BI, Freundlich RE, Shanks AM, Heung M, Kim M, et al. Preoperative risk and the association between hypotension and postoperative acute kidney injury. Anesthesiology. 2019; This article of outstanding importance describes the overall AKI risk in surgery as 9%, and highly influenced by patient and surgical risk factors. The study highlights the importance of preoperative risk stratification, with high risk patients being more sensitive to minor episodes of absolute hypotension intraoperatively.

  57. Gum JL, Carreon LY, Kelly MP, Hostin R, Robinson C, Burton DC, et al. Cell saver for adult spinal deformity surgery reduces cost. Spine Deform. 2017;5:272–6.

    Article  PubMed  Google Scholar 

  58. Chanda A, Smith DR, Nanda A. Autotransfusion by cell saver technique in surgery of lumbar and thoracic spinal fusion with instrumentation. J Neurosurg. 2002;96:298–303.

    PubMed  Google Scholar 

  59. Kelly PD, Parker SL, Mendenhall SK, Bible JE, Sivasubramaniam P, Shau DN, et al. Cost-effectiveness of cell saver in short-segment lumbar laminectomy and fusion (</=3 levels). Spine. 2015;40:E978–85.

    Article  PubMed  Google Scholar 

  60. Bilotta F, Guerra C, Rosa G. Update on anesthesia for craniotomy. Curr Opin Anaesthesiol. 2013;26:517–22.

    Article  CAS  PubMed  Google Scholar 

  61. Flaherty ML, Kissela B, Woo D, Kleindorfer D, Alwell K, Sekar P, et al. The increasing incidence of anticoagulant-associated intracerebral hemorrhage. Neurology. 2007;68:116–21.

    Article  CAS  PubMed  Google Scholar 

  62. Hanalioglu S, Sahin B, Sahin OS, Kozan A, Ucer M, Cikla U, et al. Effect of perioperative aspirin use on hemorrhagic complications in elective craniotomy for brain tumors: results of a single-center, retrospective cohort study. J Neurosurg. 2019:1–10.

  63. Frontera JA, Lewin JJ 3rd, Rabinstein AA, Aisiku IP, Alexandrov AW, Cook AM, et al. Guideline for reversal of antithrombotics in intracranial hemorrhage: a statement for healthcare professionals from the Neurocritical Care Society and Society of Critical Care Medicine. Neurocrit Care. 2016;24:6–46.

    Article  CAS  PubMed  Google Scholar 

  64. Bagwe S, Chung LK, Lagman C, Voth BL, Barnette NE, Elhajjmoussa L, et al. Blood transfusion indications in neurosurgical patients: a systematic review. Clin Neurol Neurosurg. 2017;155:83–9.

    Article  PubMed  Google Scholar 

  65. McIntyre LA, Fergusson DA, Hutchison JS, Pagliarello G, Marshall JC, Yetisir E, et al. Effect of a liberal versus restrictive transfusion strategy on mortality in patients with moderate to severe head injury. Neurocrit Care. 2006;5:4–9.

    Article  PubMed  Google Scholar 

  66. Vincent JL, Baron JF, Reinhart K, Gattinoni L, Thijs L, Webb A, et al. Anemia and blood transfusion in critically ill patients. JAMA. 2002;288:1499–507.

    Article  PubMed  Google Scholar 

  67. Boutin A, Moore L, Green RS, Zarychanski R, Erdogan M, Lauzier F, et al. Hemoglobin thresholds and red blood cell transfusion in adult patients with moderate or severe traumatic brain injuries: a retrospective cohort study. J Crit Care. 2018;45:133–9.

    Article  PubMed  Google Scholar 

  68. Liu WC, Wen L, Xie T, Wang H, Gong JB, Yang XF. Therapeutic effect of erythropoietin in patients with traumatic brain injury: a meta-analysis of randomized controlled trials. J Neurosurg. 2017;127:8–15.

    Article  PubMed  Google Scholar 

  69. Chen H, Chen M. The efficacy of tranexamic acid for brain injury: a meta-analysis of randomized controlled trials. Am J Emerg Med. 2019.

  70. Hooda B, Chouhan RS, Rath GP, Bithal PK, Suri A, Lamsal R. Effect of tranexamic acid on intraoperative blood loss and transfusion requirements in patients undergoing excision of intracranial meningioma. J Clin Neurosci. 2017;41:132–8.

    Article  CAS  PubMed  Google Scholar 

  71. collaborators C-t. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet. 2019;394:1713–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamilla Esfahani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Blood Management

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esfahani, K., Dunn, L.K. & Naik, B.I. Blood Conservation for Complex Spine and Intracranial Procedures. Curr Anesthesiol Rep 10, 157–165 (2020). https://doi.org/10.1007/s40140-020-00383-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-020-00383-9

Keywords

Navigation